

Sudbury Area Risk Assessment Volume II

Appendix I:

Speciation of Air, Dust and Soil Samples

This page is left blank intentionally

SUDBURY AREA RISK ASSESSMENT VOLUME II

APPENDIX I: SPECIATION OF AIR, DUST, AND SOIL SAMPLES

The following appendix is composed of thirteen distinct documents, which have been placed in approximate chronological order of occurrence:

- The revised draft of a *Proposed Approach to Metal Speciation of Environmental Samples for the Sudbury Soils Study* by the SARA Group. This document provides overview of the summary literature review conducted by the SARA Group to evaluate potential approaches for conducting speciation of media samples for the Sudbury Soils Study (begins on page 5 of this appendix).
- Minutes from a meeting of the *Metal Speciation Task Force* on November 3, 2004. The Technical Committee struck a task force composed of expertise available within the member TC organizations to assist the SARA Group in developing a consensus approach to speciation of media samples as part of the Sudbury Soils Study HHRA (begins on page 31 of this appendix).
- A Combined Mineralogical and Analytical Study of Speciation of Chemicals of Concern (COC's) in Soils, Dusts and Air Filters by SGS Lakefield Research Limited (including appendices of detailed laboratory results). This is the detailed report, dated August 18, 2005, outlining the analytical results from the Tessier leach and SEM analyses conducted by SGS Lakefield (begins on page 38 of this appendix).
- A memo providing *A Review of Lakefield Research Ni Speciation Results* from Dr. Fred Ford. This memo, dated September 16, 2005, outlines Dr. Ford's observations of SGS Lakefield's approach for evaluating nickel speciation, and comments on the identification of potential nickel subsulphide within certain air filter and dust samples analyzed by SGS (begins on page 102 of this appendix).
- A report, dated November 23, 2005, from Jeff Warner of Canadian Light Source (CLS) laboratories outlining the results of XANES analyses conducted on a number of air filter samples (begins on page 105 of this appendix).
- A report, dated October 5, 2005, from Dr. Marc Lamoureux of EnviroAnalytix Services titled *Report on nickel (Ni) speciation in particulate matter collected on filters*. The MOE requested splits of specific air filter samples taken during the year long monitoring survey (though different samples than those analysed by CLS) and contracted Dr. Lamoureux to conduct XANES analyses on these samples (begins on page 123 of this appendix).
- Minutes from a followup meeting of the *Metal Speciation Task Force* on January 20, 2006. The purpose of this meeting was to evaluate the speciation data collected to date and provide guidance to the SARA Group on what additional work may be required going forward to address identified data gaps (begins on page 151 of this appendix).

- A Mineralogical Study of Speciation of Ni in two Dust- and five Air-Filter Samples: SARA Project by SGS Lakefield Research Limited. This report, dated March 17, 2006, provides followup SEM analyses based upon recommendations from the previous Speciation Task Force meeting (begins on page 164 of this appendix).
- A report, dated April 17, 2006, from Jeff Warner of Canadian Light Source (CLS) laboratories outlining the results of XANES analyses conducted on a number of air filter and indoor dust samples recommended during the previous Speciation Task Force meeting (begins on page 182 of this appendix).
- Minutes from a second follow up meeting of the *Metal Speciation Task Force* on May 8, 2006. The purpose of this meeting was to again evaluate the speciation data collected to date and provide guidance to the SARA Group on what additional work may be required going forward to address identified data gaps (begins on page 200 of this appendix).
- An email correspondence from Jeff Warner of CLS, dated May 22, 2006, providing information on the theoretical method detection limit for nickel subsulphide in their XANES analyses, as requested in the latest Task Force meeting (begins on page 206 of this appendix).
- A memo from Chris Hamilton of SGS providing further quantification breakdown of of the nickel species fingerprint present in the previously analysed indoor dust and air filter samples, as requested in the latest Task Force meeting (begins on page 207 of this appendix).
- Summary of speciation analyses conducted by the Laboratory for Environmental and Geological Studies (LEGS) on five (5) soil and nine (9) indoor dust samples. The raw data report (which included the results of bioaccessibility analyses) was submitted to the SARA Group on February 12, 2007. The associated raw spreadsheet data for each sample analyses are also included (begins on page 210 of this appendix).

Proposed Approach to Metal Speciation of Environmental Samples for the Sudbury Soils Study

Revised Draft

Prepared by:

Metal Speciation Rationale Draft Version 2.1 February 22, 2005

Table of Contents

Page

1.0	EXECUTIVE SUMMARY	3
2.0	INTRODUCTION	4
3.0 3.1 3. 3.	GENERAL ASPECTS OF METAL SPECIATION Chemical Separation Methodologies 1.1 Sequential Leaching Methodologies for Speciation of Metals in Solid Samples 1.2 Other Speciation Techniques	6 7 9
4.0	RELEVANT EXPERIENCE FROM THE PORT COLBORNE PROJECT	13
5.0	CONCLUSION AND RECOMMENDATIONS	14
6.0	REFERENCES	15

APPENDIX A ALTERNATIVE SPECIATION METHODOLOGIES

1.0 EXECUTIVE SUMMARY

Chemists and toxicologists have increasingly realized that determining total concentrations of metals and metalloids cannot always provide the required information about the mobility, bioavailability, and potential toxicity of an element on ecological systems or biological organisms

The geological formations of the Sudbury basin, transformation during the smelting process and weathering in the environment can have implications on the forms in which some of the Chemicals of Concern (COCs; specifically arsenic, cobalt, copper, nickel, lead, and selenium) will be available to biological systems, including people. Specific methodologies are required to determine each particular form of the metal. For example, nickel may be present in the environment in a variety of forms, including soluble nickel, nickel sulphide, and nickel oxides.

The process of determining the actual form of an element present within a given sample matrix is referred to as *speciation*. This is particularly relevant to the assessment of risks related to nickel exposures because the form of nickel in soil (or particulate matter) can have an important impact on its bioavailability and toxicity for both the natural ecosystem and human health.

A preliminary draft of available speciation methodologies was provided to the Technical Committee for discussion from the SARA Group in the fall of 2004. This was followed by a technical meeting on November 3, 2004, to discuss how speciation should be addressed in the current study.

During that meeting, and subsequent discussions, it was agreed that:

- Speciation of nickel is the priority for the Human Health Risk Assessment (HHRA).
- Metal speciation is not necessary for the Ecological Risk Assessment.
- Speciation of nickel in soil and air samples is considered the priority from an exposure pathway perspective.
- Speciation may be carried out on samples of indoor dust if sufficient material is available and it is considered necessary.
- Total metal (metalloid) concentrations will be used to assess human health risks and ecological risks for COCs other than nickel.
- A weight-of-evidence approach to speciation will be employed.
- The recommended primary methodology for sample speciation is the modified Tessier sequential leach extraction.
- The secondary method involving a bulk analysis using a soil trace mineral search technique (also termed QemSCAN) will be performed on approximately 10% of the samples to verify results of the leach extraction procedure.
- Samples will be submitted for QA/QC purposes that may include Certified Reference Material (if available), split samples or round robin testing. Recognizing that speciation analysis is not a common commercially available procedure.

2.0 INTRODUCTION

Within the last two decades toxicologists, environmental chemists and scientists have increasingly realized that determining total concentrations of an element cannot provide the required information about the element's mobility, bioavailability, and potential toxicity on ecological systems or biological organisms (Michalke, 2003; Peijnenburg and Jager, 2003). Therefore, methods have been developed for identifying and measuring the different forms of metals (or metalloids) in environmental matrices (*i.e.*, soil, air, water, biological tissues). The process of determining the actual form of a metal present within a given sample matrix is referred to as *speciation*.

The metal species or form of a given metal or metalloid will influence its bioavailability and bioaccessibility in the environment as well as biological systems. The "bioavailable fraction" is the fraction of the total amount of a chemical present in a specific environmental compartment that, within a given time span, is taken up by (micro)organisms, plants or animals (including humans), either through direct absorption from the microenvironment surrounding an organism, or by the ingestion of food. On the other hand, the "bioaccessible fraction" refers to the amount of a chemical available for uptake.

The relative risk of trace metals and elements in the environment will depend upon the state of solubility or "bioaccessability". Different forms of the same metal can range from essential to innocuous to toxic (Caruso and Montes-Bayon, 2003). Metals in particular interact as parts of macromolecules (proteins, enzymes, hormones, *etc.*) according to their oxidation state. Health risk research that focuses on speciation may eventually lead to regulatory criteria based on maximal element species concentrations rather than total element concentrations (Michalke, 2003). For the purpose of health protection and risk assessment, it is inadequate to consider only the total quantity of a trace metal or metalloid that might be evaluated for the purpose of exposure assessment.

Speciation analyses are required to perform adequate risk assessments for potential exposure to metals within a community. For example, inorganic arsenic species are clearly toxic, while the innocuous organic form of arsenic, arsenobetaine (commonly found in seafood), poses little risk and does not influence the outcome of a community-based health risk assessment. Chromium, like arsenic, can be either essential (*i.e.*, Cr(III)) or harmful (*i.e.*, Cr(IV)), depending on its oxidation state.

Speciation information relating to specific hazardous species in soils and Particulate Matter (PM) can be used to augment epidemiological and toxicological studies that would otherwise be based solely on elemental composition data alone. Reliable data for *both* the concentration and bioavailability of specific hazardous species contributes to the assessment of initiators of adverse health effects associated with the inhalation of airborne soils or PM (Huggins *et al.*, 2004).

It is, therefore, important to develop quantitative methods of speciating elements in the sample media to correlate the presence of specific chemical species with the potential for adverse effects on the human body, and to improve our understanding of their formation and reaction mechanisms. Direct determination of such species would both improve the quality of predictions

of human health risks, and aid epidemiological studies by providing unambiguous data on specific, potentially toxic, inorganic substances. For example, the correlation between total nickel and health effects in a sample population is *unlikely* to be the same as the correlation with health effects of a minor, toxic species such as nickel sulphide (Huggins *et al.*, 2004).

"Elemental speciation" has been defined "as the analyses that lead to determining the distribution of an element's (or metal's) particular chemical species in a sample" (Caruso and Montes-Bayon, 2003; Caruso *et al.*, 2003). A chemical species is defined as a specific form of a chemical element, such as molecular or complex structure or the oxidation state of a metal. Consequently, a speciation analysis is defined as the analytical activity of identifying and measuring species as necessary (Caruso *et al.*, 2003).

It is the purpose of this document to provide information on available methodologies that could be applied to the analysis of media samples for the purpose of establishing the relative abundance of metals in specified oxidation states in different sample matricies (*e.g.*, soil, TSP, PM_{10} and $PM_{2.5}$). More importantly, methods are recommended for proceeding with the Sudbury Soils Study.

For the purpose of the Sudbury Soils Study, only speciation of COCs in soil samples and atmospheric particulate matter (gathered as part of the air monitoring survey) is proposed. With respect to food materials (*e.g.*, those gathered as part of the vegetable garden survey), the available literature suggests that the COCs would already be in an organically bioavailable form within the media, therefore, speciation of food materials is not recommended for the current study. As well, speciation of water samples is not felt to be necessary given any present COCs will be in a soluble form, and would be evaluated as such within the risk assessment. Speciation of indoor dust samples will be considered if deemed necessary.

3.0 GENERAL ASPECTS OF METAL SPECIATION

Complete speciation schemes consist of sampling, sample preparation, species analysis, and evaluation. Without proper sampling and sample preparation procedures, there is little chance that any speciation analysis will provide reliable data upon which human health or environmental decisions can be based (Caruso *et al.*, 2003; Caruso and Montes-Bayon, 2003). Quality control approaches and statistical data handling are a must for providing reliable results. A review on sample collection, pretreatment, and storage of a wide range of sample types has been published by Szpunar (2000).

3.1 Chemical Separation Methodologies

Conventional inductively coupled plasma-mass spectrometry (ICP-MS) is used as part of speciation analysis in a series of carefully planned sequential steps (Vincent *et al.*, 2001; Profumo *et al.*, 2003; Fernádez Espinosa *et al.*, 2004). Recent developments in this branch of analytical chemistry have been reviewed by Beauchemin (2002). Unexpected changes to the metal of interest might occur during either sample collection or preparation (*e.g.* changed oxidation state). Such changes alter the original species identity and its amount and therefore will defeat the purpose of the analyses (to inform and characterize the risk to health).

Two general approaches are available (Caruso and Montes-Bayon, 2003). These include: (1) the segregation of bioaccessible from relatively biologically inert forms of a metal by sequential application of separation techniques, and 2) the speciatation of metals through the application of non-destructive techniques that retain the sample integrity (*e.g.*, X-ray or high energy methods). These methods are discussed below in Sections 3.1.1 and 3.1.2, respectively.

There is no standard method accepted by any regulatory agency that explicitly describes an "agency certified" methodology for chemical speciation in environmental samples. Extraction and fractionation of chemical species based on relative solubility of a substance is a technique that is available for metals speciation. Physical-chemical separation methods that retain the unaltered form of a metallic species in a mixture begin with the mildest extraction conditions possible to segregate the metal ionic forms from one another and from the sample matrix (Michalke, 2003). Chemical separation techniques have been used to characterize eleven metals by valence in fine air particulate from urban sites (Fernádez Espinosa *et al.*, 2002). Sometimes sample preparation can be expedited by such techniques as microwave-assisted extraction (MAE). This methodology can be carried out at atmospheric pressure, at variable temperature, and using variable solvents or extraction time to achieve the mildest extraction conditions (Caruso and Montes-Bayon, 2003).

It should be noted that wet extraction procedures have presented serious challenges for analyses of samples in matrices other than aquatic sediments or soils. Thermodynamic equilibrium is rarely achieved in natural systems and consequently the predictive power of generalized speciation techniques applied to "soil" or "sediments" remains poor (Gaillard *et al.*, 2001). Sequential extraction protocols are also prone to artifacts (Tipping *et al.*, 1985) and require careful evaluation and calibration before being used on a specific sample (Tessier and Campbell, 1988; Profumo *et al.*, 2003).

3.1.1 Sequential Leaching Methodologies for Speciation of Metals in Solid Samples

Sequential leaches are a long-standing, documented analytical technique used to predict metal association in soils. The chemical models that provide the rationale for these methods have been based on equilibrium reactions, or on empirical determinations from wet chemical methods that rely on the sequential extraction of various phases (Tessier *et al.*, 1979; Tessier and Campbell, 1988; Gaillard *et al.*, 2001; Fernádez Espinosa et al, 2002). Recently, Profumo *et al.* (2003) and Vincent *et al.* (2001) have described the determination of species of inorganic nickel in particulate matter through the application of a sequential dissolution method. Species of nickel have been identified in several standard reference materials including coal fly ash (SRM 1633b), urban particulate (SRM 1648) and urban dust (SRM 1649). Nickel was also identified in particulate matter collected on filter media operating under low flow (0.1 to 1.0 L min⁻¹) or in a hi-vol PM₁₀ sampler or cascade impactor (Fernádez Espinosa *et al.*, 2002; Huggins et al, 2000b; Profumo *et al.*, 2003). High recoveries (approximately 100%) were reported for nickel concentrations of 7 to 10 µg/gram particulate matter recovered (Profumo *et al.*, 2003).

Although there have been some identified errors with this approach overall it appears to be as useful technique, especially when wet-chemical leaches can be combined with mineralogical examination of the soil samples. As discussed above, the principle of elution and separation of metal species based on relative solubility under differing conditions of pH is a well investigated approach to metal speciation. *Conceptually*, the solid material can be partitioned into specific fractions which can be extracted selectively by using appropriate reagents; considering the similarities between sediments and soils, extraction procedures can be borrowed or adapted from the methods of sediment chemical analysis.

For the current study, the sequential leach protocol referred to as a modified Tessier method is recommended (Tessier, Campbell, and Bisson, 1979). This technique partitions the metals of interest into six fractions (water soluble, exchangeable, bound to carbonates, bound to Fe-Mg oxides, bound to organics, residual).

Tessier Sequential Leach Method

Tessier *et al.* (1979) developed experimental procedures to assist in the determination of chemical species in particulate trace metals. These procedures have been grouped into: (i) methods designed to effect the separation between residual and non-residual metals only (2-5); and, (ii) more elaborate methods making use of sequential extractions.

In defining the desired partitioning of trace metals, Tessier *et al.* (1979) took care to choose fractions likely to be affected by various environmental conditions. The following five fractions were selected:

Fraction 1: Exchangeable

In studies on sediments or on their major constituents (*e.g.*, clays, hydrated oxides of iron and manganese, humic acids), the adsorption of trace metals may be the result of simple ionic attraction; a change in water ionic composition is likely to affect sorption-desorption processes.

(i) *Exchangeable*. The sediment was extracted at room temperature for 1 h with 8 mL of either magnesium chloride solution (1 M MgCl, pH 7.0) or sodium acetate solution (1 M NaOAc, pH 8.2) with continuous agitation.

Fraction 2: Bound to Carbonates

Significant trace metal concentrations can be associated with sediment carbonates; this fraction would be susceptible to changes of pH.

(ii) *Bound to Carbonates.* The residue from (i) was leached at room temperature with 8 mL of 1 M NaOAc adjusted to pH 5.0 with acetic acid (HOAc). Continuous agitation was maintained and the time necessary for complete extraction was evaluated.

Fraction 3: Bound to Iron and Manganese Oxides

Iron and manganese oxides exist as nodules, concretions, cement between particles, or simply as a coating on particles; these oxides are excellent scavengers for trace metals and are thermodynamically unstable under anoxic conditions (*i.e.*, low Eh).

(iii) *Bound to Fe-Mn Oxides*. The residue from (ii) was extracted with 20 mL of either 0.3 M Na₂S₂0₄ + 0.175 M Na-citrate + 0.025 M H-citrate, or 0.04 M NH₂0H- HCl in 25% (v/v) HOAc. The latter experiments were performed. at 96 \pm 3 °C with occasional agitation.

Fraction 4: Bound to Organic Matter

Trace metals may be bound to various forms of organic matter: living organisms, detritus, coatings on mineral particles, *etc*. The complexation and peptization properties of natural organic matter (notably humic and fulvic acids) are well recognized, as is the phenomenon of bioaccumulation in certain living organisms. Under oxidizing conditions in natural waters, organic matter can be degraded, leading to a release of soluble trace metals.

(iv) Bound to Organic Matter. To the residue from (iii) were added 3 mL of 0.02 M HNO_3 and 5 mL of 30% H_2O_2 adjusted to pH 2 with HNO_3 , and the mixture was heated to 85 ± 2 °C for 2h with occasional agitation. A second 3-mL aliquot of $30\% H_2O_2$ (pH 2 with HNO_3) was then added and the sample was heated again to 85 ± 2 °C for 3h with intermittent agitation. After cooling, 5 mL of 3.2 M NH₄OAc in 20% (v/v) HNO₃ was added and the sample was diluted to 20 mL and agitated continuously for 30 min. The addition of NH₄OAc is designed prevented adsorption of extracted metals onto the oxidized sediment.

Fraction 5: Residual

After removal of the first four fractions, the residual solid should contain mainly primary and secondary minerals, which may hold trace metals within their crystal structure. These metals are not expected to be released in solution over a reasonable time span under the conditions normally encountered in nature.

(v) Residual. The residue from (iv) was digested with a 5:1 mixture of hydrofluoric and perchloric acids (HF-HClO₄). Sediment was first digested in a platinum crucible with a solution of concentrated HClO₄ (2 mL) and HF (10 mL) to near dryness; subsequently a second addition of HClO₄ (1mL) and HF (10 mL) was added and evaporated to near dryness. Finally, HClO₄ (1 mL) alone was added and again the mixture was evaporated until the appearance of white fumes. The residue was dissolved in 12 N HCl and diluted to 25 mL. This solution was analyzed by flame atomic absorption spectrometry for trace metals using standard techniques.

The SARA Group proposes the application of a sequential leach procedure based on Tessier (Tessier, Campbell, and Bisson, 1979) and further refined by NIST (Shultz, Inn, and Burnett, 2002).

Information on alternative sequential leach methods is provided in Appendix A for interest and reference.

3.1.2 Other Speciation Techniques

Less aggressive methods than are necessary for soil analyses have been developed to characterize metal species in air particulate samples.

The main inorganic nickel compounds that are expected to be present in the atmospheric particulate emissions of industrial production include metallic nickel, Ni (0), soluble Ni (II) nickel salts, insoluble or slightly soluble nickel compounds such as NiO (1.1 mg/L), Ni₃S₂ (517 mg/L) and NiCO₃ (93 mg/L), and finally silicides and non-stoichiometric nickel compounds (Profumo *et al.*, 2003). Soluble nickel compounds (~20°C) for which biological data are available include NiCl₂ (642 g/L); Ni(SO₄)₂ (293 g/L); Ni(NO₃)₂ (2385 g/L) (ATSDR, 2003).

Mineralogical Analyses

Mineralogical analysis of the soils is typically conducted in 2 phases: 1) trace mineral analysis and 2) bulk mineral analysis. These vastly different objectives require different methodologies. The

trace mineral analysis involves detailed, systematic, high magnification scanning of polished grain mounts prepared from soil size fractions, with the COC-bearing phases characterized by elemental composition, particle size and association (Stanley and Laflamme, 1998). Bulk mineral analysis involves X-ray diffraction and QEMSCAN microscopy to characterize mineral weight%, particle size, calculated chemistry and elemental/mineral associations (Jambor and Blowes, 1998).

Soil Trace Mineral Search Technique

Each soil sample would be air dried (as per MOE methodology for environmental samples). A subsample is then subjected to water leaching to determine the presence of water soluble nickel. If the results of the water leach are negative (*i.e.*, very low soluble nickel), the sample will be wet screened into three size fractions: 1) +48 mesh (295 μ m), 2) -48 mesh/+400 mesh (44 μ m) and -400 mesh. These fractions represent the coarse sand, fine sand/silt and silt/clay (respirable) size fractions, respectively, and combine MOE soil and respirable dust protocols. One polished grain mount will be prepared from a representative portion of each size fraction.

Each grain mount will be analyzed in detail (systematic high magnification scans) using the LEO 440 Scanning Electron Microscope in backscatter electron mode. The instrument is equipped with 4 light element X-ray detectors capable of detecting the presence of low atomic number elements such as oxygen and carbon (*e.g.*, distinguishing between metal, metal alloy, metal oxide, metal carbonate, metal sulphide, metal sulphate, *etc.*) and the Isis X-ray microanalyzer that provides semi-quantitative elemental determination. A population of COC-bearing particulates can be identified and characterized with respect to: 1) bulk composition, 2) particle size, 3) mineral association/locking. Representative photomicrographs can be prepared to illustrate key morphological and textural information (*e.g.*, Figure 2 and 3 illustrate Ni-oxide/hydroxide and Ni-metal spheres identified in a contaminated soil sample, Figure 4 illustrates soil particles cemented by secondary Fe-Pb-Cu oxide, and Figure 5 illustrates a coke particle with pores filled by Pb-sulphate) (Source: SGS-LRL).

Method Considerations:

- EDS (energy dispersive spectrometry) measures elemental data with a detection limit of approximately 0.5 wt.% metal. Sample components (*e.g.*, Organics or Fe-oxyhydroxides) with COC contents below 0.5 wt.% should be measured by another technique (eg. using electron microprobe (EMP) or ion probe (SIMS) analysis).
- Analysis by size fraction is recommended to homogenize sample components, eliminate nugget-effects and provide more representative data.
- The electron beam diameter is nominally 1 µm (both in area and depth of penetration). Particles down to approximately 1 µm may be detectable, but will exhibit spectral overlap with adjacent phases. Detection limits are dependent upon magnifications used.
- Scanning Electron Microscopy (SEM) methodology does not provide structural data (such as is provided by XRD-X-ray Diffraction analysis or XAS-X-ray Atomic Spectroscopy analysis).
- SEM methodology does not recognize H, and therefore cannot differentiate between oxide and hydroxide minerals.

Soil Bulk Mineralogical Analysis

A variety of methodologies are available to conduct bulk mineralogical analyses on soil or particulate samples.

X-ray Diffraction Analysis

In this analysis, a portion of each head/size fraction would be pulverized and subjected to X-ray diffraction analysis using a Siemens D5000 diffractometer equipped with a Co radiation source and graphite monochrometer. The XRD patterns will be interpreted using both automated search/match software and manual analysis. The semi-quantitative crystalline components of each head/size fraction will be reported as major, moderate, minor or trace/tentative based on peak intensity.

QemSCAN Bulk Modal Analysis

For this analysis, one polished grain mount is prepared from representative portion of each head/size fraction. Bulk modal analysis (vol.% / wt.%) of the mineral, slag and/or organic components of the soil is determined using the LEO 440 QemSCAN (Quantitative Evaluation of Materials using Scanning Electron Microscopy). More than 100,000 data points per head/size fraction are typically analysed. Output from a typical bulk modal analysis provides mineral content, particle size information and assay reconcilliation by size fraction. Figure 1 illustrates the typical mineral particle size, grain morphology and presence of metal-oxides in a soil sample containing elevated metal concentrations.

Figure 1 Low magnification image of a contaminated soil dominated by potassium feldspar and quartz. Minerals made up of high atomic number elements, such as Fe, Pb and As, show up as bright regions (arrows) (Polished grain mount with Backscatter Electron Image)

SARA – Metal Speciation Rationale – Draft v2.1 February 22, 2005

Considerations: Non-crystalline phases such as glass are not detected by this technique. Detection limit ranges from 0.5 to 2 wt.% mineral and is highly dependent upon mineral crystallinity.

It should be noted that the LEO 440 QemSCAN is a high quality scanning electron microscope fitted with 4 light element X-ray detectors, Isis X-ray microanalyzer, secondary, backscatter and X-ray detectors, digital image processing, automated multi-sample stage and sample management/analysis software designed by CSIRO. It is a state-of-the art instrument for mineralogical analysis and is currently being utilized by significant mining companies for ore characterization and metallurgical plant audits.

Considerations: LOD for EDS analysis is approximately 0.2 wt.% metal. Mineral identifications and chemical reconciliations are based on species identification program (SIP) data which are based on published mineral chemistry or site specific electron microprobe analyses).

Electron Microprobe Analysis (EMP)

Selected soil components may require detailed mineral-chemical analysis using a JEOL 733 Super probe fitted with four wavelength dispersive spectrometers (WDS). The EMP analyses provide both major and trace mineral chemistry with a detection limit of approximately 0.02 wt.% element. These analyses may be critical to detect low level C-of-C's within the structure of other soil components (such as Fe-oxide/hydroxides). These analyses are also important in the development site-specific QemSCAN SIPs.

A more detailed overview of other potential speciation techniques are provided in Appendices A and B of this document.

4.0 RELEVANT EXPERIENCE FROM THE PORT COLBORNE PROJECT

In its soil investigation for the Rodney Street Community in Port Colborne, the Ontario Ministry of the Environment examined different methods for speciation of nickel present in a limited number of soil samples. Nickel speciation was conducted by several groups for the purpose of comparing results across different methodologies and analytical techniques. One laboratory (Northern Development and Mines Geoscience Laboratory in Sudbury) reported only nickel oxide as present. Similarly, a report prepared for INCO, and a Jacques Whitford Environmental Ltd. report also concluded that elemental nickel and nickel oxide (NiO) were the only forms of the metal present in samples analysed. Neither Nickel sulphate or nickel subsulphide were observed.

In addition to routine analysis, the MOE requested that two additional methods be exploited to prepare a quantitative speciation of nickel forms in contaminated soils. Twenty samples were sent to Lakefield research where a non-standard wet chemical approach sequential elution approach to metals speciation was utilized. A second set of six samples were submitted to X-ray absorption fine structure spectroscopy (XAFS) at the Stanford Synchrotron facility in California.

The XAFS samples revealed only NiO present (MOE, 2001; Lamoureux, 2001). Additional scanning electron microscope methods applied by Enpar (2001) or by Inco Analytical Services (2001) also reported only NiO in the samples examined.

On the other hand, the Lakefield sample methodology of sequential elution produced $\sim 0.4\%$ soluble Ni, 7.7% Ni sulphide and 11.3% nickel metal. The remainder of the nickel observed by Lakefield was NiO. The MOE soils study at Port Colborne was unable to draw definitive conclusions on the basis of the conflicting results available.

Additional scanning electron microscope methods applied by Enpar (2001) or by Inco Analytical Services (2001) also reported only NiO in the samples examined (*i.e.*, they were specifically looking for NiO or nickel subsulfide or metallic nickel in specific soil samples).

A major concern with the results of metal speciation analyses is whether or not species interconversion takes place during any of the steps undertaken during a particular speciation analysis. Compensation may be available when quantifiable conversions of metal species can be identified as a component of sample preparation. Clearly, the need for exacting protocols in the sampling and sample preparation process is critical (Caruso and Montes-Bayon, 2003).

5.0 CONCLUSION AND RECOMMENDATIONS

Speciation of metals present as a mixture can be accomplished by the careful application of sequentially stronger solvents capable of releasing different species of metal under highly specified conditions. The proposed methodology would involve the use of the modified Tessier sequential leach analyses, to provide baseline speciation of each of the COCs. This is a common approach taken when evaluating sediment samples, and these methodologies have also been successful applied to the speciation of small air particulate samples (Fernádez Espinosa *et al.*, 2002, 2004; and Profumo *et al.*, 2003). The analyses will be able to identify: (1) soluble and exchangeable metals; (2) carbonates, oxides and reducible metals; (3) metals bound to organic matter, oxidizable and sulphidic metals; and (4) residual metals.

However, as each different type of analyses provides a different clue as to the speciation of a given sample, it is advisable to take a "weight of evidence" approach, and use a number of analyses in combination to provide an accurate speciation picture. As such, to verify the findings of the sequential leach procedure it is recommended that approximately 10% of the soil samples be submitted for physical analysis by soil trace mineral search techniques, such as QemSCAN.

For the purpose of the current study, only speciation of the COCs in soil samples and atmospheric particulate matter (gathered as part of the air monitoring survey) is proposed. With respect to food materials (*e.g.*, those gathered as part of the vegetable garden survey), the available literature suggests that the COCs would already be in an organically bioavailable form within the media; therefore, speciation of food materials is not recommended for the current study. As well, speciation of water samples is not felt to be necessary given any present COCs will be in a soluble form, and would be evaluated as such within the risk assessment. Speciation of indoor dust samples will be considered when the dust survey results are reviewed and the importance of this exposure pathway is fully evaluated.

6.0 REFERENCES

ATSDR. 2003. Toxicological profile for Nickel (Update). Agency for Toxic Substances and Disease Registry, Department of Health and Human Services, Public Health Service. Draft September, 2003.

Batalha JR, Saldiva PH, Clarke RW, Coull BA, Stearns RC, Lawrence J, Murthy GG, Koutrakis P, Godleski JJ. 2002. Concentrated ambient air particles induce vasoconstriction of small pulmonary arteries in rats. Environ Health Perspect. 110(12):1191-1197.

Beauchemin D. 2002. Inductively coupled plasma mass spectrometry. Anal Chem 74: 2873-2894.

Bhatnagar A. 2004. Cardiovascular pathophysiology of environmental pollutants. Am J Physiol Heart Circ Physiol. 286: H479-H485.

Brown, S. S., Nomoto, S., Stoeppler, M., Sunderman, F. W., Jr. (1981). IUPAC reference method for analysis of nickel in serum and urine by electrothermal atomic absorption spectrophotometry. Clin. Biochem. 14: 295-299.

Caruso JA, Klaue B, Michalke B, Rocke DM. 2003. Group assessment: elemental speciation. Ecotoxicology and Environmental Safety 56:32-44.

Caruso JA and Montes-Bayon M. 2003. Elemental speciation studies-new directions for trace metal analysis. Ecotoxicology and Environmental Safety 56: 148-163.

Enpar Technologies Inc. 2001. Scanning Electron Microscopy and Energy Dispersive X-Ray Analyses of Four Soil Samples from the Port Colborne Area. Project No. 30029, prepared for Jacques Whitford Environmental Ltd. January 24, 2001. Cited in: MOE, 2002.

Fernádez Espinosa AJ, Rodríguez MT, Álverez FF. 2004. Source characterisation of fine urban particles by multivariate analysis of trace metals speciation. Atmospheric Environment 38: 873-886.

Fernádez Espinosa AJ, Rodríguez MT, de la Rosa JB, Sánchez JCJ. 2002. A chemical speciation of trace metals for fine urban particles. Atmospheric Environment 36: 773-780.

Fernádez AJ, Ternero M, Barragán FJ, Jiménez JC. 2000. An approach to characterization of sources of urban airborne particles through heavy metal speciation. Chemosphere-Global Change Science 2: 123-136.

Gaillard J-F, Webb SM, Quintana JPG. 2001. Quick X-ray Absorption Spectroscopy for Determining Metal Speciation in Environmental Samples. J Synchrotron Rad. 8: 928-930.

Giauque RD, Jaklevic JM, Thompson AC. 1986. Trace element determination using synchrotron radiation. Anal. Chem. 58: 940-944.

Gold DR, Litonjua A, Schwartz J, Lovett E, Larson A, Nearing B, Allen G, Verrier M, Cherry R, Verrier R. 2000. Ambient pollution and heart rate variability. Circulation 101(11): 1267-1273.

Gurgueira SA, Lawrence J, Coull B, Murthy GG, Gonzalez_Flecha B. 2002. Rapid increases in the steady_state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ Health Perspect. 110(8): 749-755.

Huang YC, Ghio AJ, Stonehuerner J, McGee J, Carter JD, Grambow SC, Devlin RB. 2003. The role of soluble components in ambient fine particles_induced changes in human lungs and blood. Inhal Toxicol. 15(4): 327-342. *Cited in*: Huggins et al., 2004.

Huggins FE, Shah N, Huffman GP, Robertson DJ. 2000a. XAFS spectroscopic characterization of elements in combustion ash and fine particulate matter. Fuel Processing Technology 65-66: 203-218.

Huggins FE, Shah N, Huffman GP, Robertson DJ. 2000b. Speciation of elements in NIST particulate matter SRMs 1648 and 1650. J Hazardous Materials 74: 1-23.

Huggins FE, Huffman GP, Linak WP, Miller CA. 2004. Quantifying Hazardous Species in Particulate Matter Derived from Fossil-Fuel Combustion. Environ. Sci. Technol. 38(6): 1836-1842.

Inco Analytical Services. 2001. *Mineralogy Report, Project Number 55-813*, February 19, 2001. *Cited in:* MOE, 2002.

Jaklevic JM, Kirby JA, Ramponi J, Thompson AC. 1980. Chemical characterization of air particulate samples using x-ray absorption spectroscopy. Environ. Sci. Technol. 14: 437-441.

Jambor, J.L. and Blowes, D.W. 1998. Theory and Applications of Mineralogy in Environmental Studies of Sulfide-Bearing Mine Wastes. In Modern Approaches to Ore and Environmental Mineralogy. Mineralogical Association of Canada Short Course Series Volume 27. Editors Louis J. Cabri and David J. Vaughan.

Magari SR, Schwartz J, Williams PL, Hauser R, Smith TJ, Christiani DC. 2002. The association of particulate air metal concentrations with heart rate variability. Environ Health Perspect. 110(9): 875-880.

Michalke B. 2003. Element speciation definitions, analytical methodology, and some examples. Ecotoxicology and Environmental Safety 56: 122-139.

MOE. 2002. Part A Soil Investigation: Main Document. Soil Investigation and Human Health Risk Assessment for the Rodney Street Community, Port Colborne: March 2002. Ontario Ministry of the Environment at <u>http://www.ene.gov.on.ca/envision/land/portcolborne/4255e.htm</u>.

MOE, Lamoureux. 2001. Unpublished report prepared by Dr M Lamoureux 2001. *Cited in*: MOE, 2002.

Peijnenburg WJGM, Jager, T. 2003. Monitoring approaches to assess bioaccessibility and bioavailability of metals: Matrix issues. Ecotoxicology and Environmental Safety 56: 63-77.

Profumo A, Spini G, Cucca L, Pesavento M. 2003. Determination of inorganic nickel compounds in the particulate matter of emissions and workplace air by selective sequential dissolutions. Talanta 61: 465-472.

Saldiva PH, Clarke RW, Coull BA, Stearns RC, Lawrence J, Murthy GG, Diaz E, Koutrakis P, Suh H, Tsuda A, Godleski JJ. 2002. Lung inflammation induced by concentrated ambient air particles is related to particle composition. Am J Respir Crit Care Med. 165(12):1610-1617.

Sayers DE, Stern EA, Lytle FW. 1971. New technique for investigating noncrystalline structures: Fourier analysis of extended X-ray-Absorption fine structure. Phys. Rev. Lett. 27: 1204-1220.

Stanley, C.J. and Laflamme, J.H.G. 1998. Preparation of Specimens for Advanced Ore-Mineral and Environmental Studies. In In Modern Approaches to Ore and Environmental Mineralogy. Mineralogical Association of Canada Short Course Series Volume 27. Editors Louis J. Cabri and David J. Vaughan.

Szpunar J. 2000. Bio-inorganic speciation analysis by hyphenated techniques. Analyst 125: 963-988.

Tessier A, Campbell PGC, Bisson M. 1979. Sequential extraction procedure for the speciation of particulate trace metals Anal. Chem. 51: 844- 851.

Tessier A, Campbell PGC. 1988. Comments on the testing of the accuracy of an extraction procedure for determining the partitioning of trace metals in sediments. Anal. Chem. 60: 1475-1476.

Teo BK 1986. EXAFS: Basic Principles and Data Analysis, Springer Verlag, Berlin. Cited in: Gaillard et al., 2001.

Tipping E, Hetherington NB, Hilton J, Thompson DW, Howles E, Hamilton-Taylor J. 1985. Artifacts in the use of selective chemical extraction to determine distributions of metals between oxides of manganese and iron. Anal. Chem. 57: 1944-1946.

Vincent, J.H., Ramachandran G, Kerr SM. 2001. Particle size and chemical species 'fingerprinting' of aerosols in primary nickel production industry workplaces. J. Environ. Monit. 3: 565-574.

Zatka, V.J. 1990. Speciation of Nickel Phases in Industrial Dusts.

APPENDIX A

ALTERNATIVE SPECIATION METHODOLOGIES

Zatka and Modified Zatka Sequential Leach Methods

An alternate methodology is available for the speciation on nickel in soils, bulk dust samples and air-quality monitoring samples. The methodology has risen out of INCO's continued work on speciation of nickel, and is a modification of a method originally developed by Zatka (1990) to evaluate compounds found to be present during smelting and refining of nickel sulphide ores. As such, it is important to note that Zatka's method (as well as modifications to it) have not be verified for soils, sediments or ambient air, with verification only having been conducted within occupational settings.

This methodology is similar to the Tessier leach analyses, but partitions the nickel into the following fractions:

Fraction 1: Soluble Ni Fraction 2: Ni sulfide and Ni sub sulfide Fraction 3: Ni Metallic Fraction 4: Ni Oxides.

One caveat on this methodology is the non-specificity of the nickel sulfide leach and the possibility that nickel bound up in the organic phase of a soil may also leach, resulting in high sulfidic nickel results. Combinations of this procedure with the Tessier sequential leach outlined above, and confirmation by mineralogical analysis and soil TOC analysis will provide a more complete understanding of the phases of nickel found within the soil samples.

Profumo Procedure

A simplified fractionation scheme for the segregation of different inorganic nickel compounds from complex matrices is presented by Profumo *et al.*, 2003. Weighed amounts of the sample (synthetic mixtures or standard reference materials) were treated with a few millilitres of water, and sonicated for 5 min. The solution was filtered on 0.22 μ m membrane. The solution containing the soluble salts of Ni(II) was diluted with water volumetrically (25 ml) [**S1**] and analysed.

The residue **[R1]**, which contained Ni(0), nickel sulphide and nickel oxide and other nickel insoluble compounds, was treated with 10 ml of 0.01 M FeCl₃ in 0.1 M HCl, sonicated for 5 min, and gently heated with reflux for 10 min. In this step, Ni(0) is oxidized by Fe(III) to Ni(II). Higher concentrations of Fe(III) must be avoided, because of the nickel impurities present also in the purest iron salts. The acidity prevents FeCl₃ hydrolysis and the subsequent problems in the filtration. Fe(III) compounds that can be present in the particulate matter did not interfere because the first step of the procedure was performed in water at room temperature, and the redox reaction is favoured in hot acidic. After cooling and filtration, a solution containing nickel from the metal and a residue **[R2]** were obtained. The solution was then diluted to volume (25 ml) **[S2]** with water for the analysis.

The residue [**R2**], containing all the insoluble species, was refluxed for 20 minutes in a mixture of a few milliliters HNO_3 (70%) and HCl (37%), (ratio 1:3), reduced near to dryness and diluted to volume with water, filtered, if necessary to obtain the solution [**S3**]. This solution was analysed to determine nickel from insoluble compounds, such as nickel sulphide and nickel oxide. Finally, the residue [**R3**], that can contained highly insoluble nickel compounds such as silicates, silicides and

non-stoichiometric sulphides, was digested with a few drops of hot HF (48%) till dryness, diluted to volume with distilled water, filtered and analysed **[S4]**.

Analysis and Speciation of Standard Reference Materials

Standard Reference Materials (SRMs) from NIST (National Institute of Standards and Technology) are supplied with certified values for trace metal content. These reference concentrations found in soils and particulate matter provide a standard by which the efficiency of extraction and recovery of trace metals using analytical chemical methods may be judged. The use of such standards in complex matricies is essential for the purpose of determination of quantities of specific trace metals in environmental samples.

Profumo *et al.* (2003) applied a scheme to replicate samples of 80 to 100 mg of standard reference materials. The results are shown in Table A-1.

SRM	Description	As	Fe	Co	Cu	Ni	Pb	Se
1648	Urban Particulate	115	3.91*	(18)	609	82	0.655*	27
2709	San Joaquin Soil	17.7	3.50*	13.4	34.6	88	18.9	1.57
2711	Montana Soil	105	2.89*	(10)	114	20.6	1162	1.52
2782	Industrial Sludge	166	26.9*	(66.3)	2594	154.1	574	0.44
1633b	Coal Fly Ash	136.2	7.78*	(50)	112.8	120.6	68.2	10.26
3136	Nickel standard soln.					9738		

Table A-1 Trace metals in various SRMs in µg/g (SD not shown), unless otherwise noted

() indicates non-certified value, or reference concentration; * indicates mass fraction, percent

Application of Sequential Extraction to Speciation of Metals in Samples of Urban Fine PM

Detection of metals found in air particulate samples has generally relied upon some form of inductively coupled plasma atomic emission spectrometry (ICP-AES). The chemical speciation of metals in fine particles (< 0.61 μ m average aerodynamic diameter) at concentrations in the ng/m³ has been reported (Fernádez Espinosa *et al.*, 2002; Fernádez Espinosa *et al.*, 2004). Secondary reactions occur both on air particulate matter during collection and as a result of separation techniques, no matter how rigorously the chemical speciation scheme is optimized (Fernádez Espinosa *et al.*, 2004). For the analysis of urban air fine PM, each analyses (sixth stage of a cascade impactor) utilized one-fourth of a quartz filter (thus retaining sample for cross comparison *via* other methods). Comparisons were made to similar back-up filters that had not received exposure to urban air.

In contrast to the speciation scheme proposed by Profumo *et al.* (2003) that was optimized for nickel speciation, the scheme developed by Fernádez *et al.* (2000), and Fernádez Espinosa *et al.* (2002, 2004) is one focused on the characterization of multiple metals and their species as they occur in urbanized rether than highly industrialized environments. This approach to speciation of multiple metals, and the exploitation of readily available separation and identification technology

of atomic absorption/mass spectrometry, suggests the potential of relatively high sample throughput.

Urban air quality is influenced mainly by vehicular traffic, also by the resuspended soil particles and some industrial releases. Because the study of the chemical distribution of the toxic metals is of great interest for the health of the population of large cities, 11 metals were studied by chemical speciation. The objective of earlier studies to evaluate bioavailable toxicity was to use mild extraction processes for the trace metals to mimic the release of chemical forms that could be biologically available to the respiratory tract of the human body. Therefore, the experimental conditions of earlier extraction schemes were determined based upon conditions of deposition and solubilization most likely to be found in the lung.

These resulting conditions were different from the Tessier's or the scheme derived by Profumo *et al.* (2003). The metal speciation scheme applied to air particulate fractions by Fernádez Espinosa *et al.* (2002, 2004) were considerably more aggressive than conditions likely to be encountered in biological tissues, but not as strong as those first developed by Tessier *et al.* (1979). In brief, the main differences of the scheme can be summarized as follows:

- Water was used instead of high ionic strength sodium acetate or magnesium chloride. The soluble metallic species (chlorides, sulphates, nitrates, acetates, *etc.*) were found to be quantifiably extracted in addition to the exchangeable metallic species by inherent ionic strength produced initially from dissolution of metallic species in the particles.
- Hydroxylamine chloride was used rather than acidification by acetic acid. The temperature of the extraction was maintained at close to environmentally relevant levels. High temperatures are unlikely to extract the bioavailable chemical forms of trace metals.
- pH (Tessier *et al.* use nitric acid and hydrogen peroxide) as well as the concentration of ammonium acetate are different. Nitric acid is not used. These experimental conditions are less aggressive, thus leaving this fraction extract only bound to organic matter, oxidisable and sulphidic chemical forms and not part of the residual metals.
- The more important differences are in the first two fractions; therefore, the expected important changes in their percentages will affect the percentages of the last two fractions. Since these are generally considered to have negligible bioavailability/bioaccessibility in human tissues, the important metal speciation should focus on those metals likely to be available to express a toxic effect.

The sample extractions of quartz filters were analysed in four chemical fractions for 11 elements (Mg, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Cd and Pb) by inductively coupled plasma atomic emission spectrometry (ICP-AES) or optical emission spectrometer (ICP-OES) (Fernádez Espinosa *et al.*, 2002, 2004).

After collection, air particulate sample filters stored desiccated prior to weighing. The suspended particulate matter concentration was determined by dividing the net mass of the particulate matter on the filter volume air drawn through the filter. Chemical speciation of the metals was determined by applying the sequential extraction scheme.

The sequential procedure used is presented in Table A-2.

Metallic Fraction	Reagent	Experimental conditions
1: Soluble and exchangeable metals	$15 \text{ mL H}_2\text{O} (\text{pH} = 7.4)$	Shaker, 3 H at RT ^b
2: Carbonates, oxides & reducible metals	10 mL NH ₂ OH•HCl [0.25M] at pH = 2.0	Shaker, 5 H at RT
3: Bound organic matter, oxidizable and sulphidic metals.	a) 7.5 mL H ₂ O ₂ , 30% b) + 7.5 mL H ₂ O ₂ 30% c) + 15 mL NH ₄ AcO [2.5M] at pH = 3.0	Shaker at ΔT (95 °C) ^c Shaker at ΔT (95 °C) Shaker, 90 min at RT
4: Residual metals	10 mL (HNO ₃ : HCl : HClO ₄) [ratio = 6:2:5]	5 H + Shaker at Δ T (95 °C)

Table	A-2	Chem	ical	Spe	ciation	Scheme ^a

^a Adapted from Fernádez Espinosa *et al.*, 2004.

^b RT = room temperaqture; ${}^{c}\Delta T$ = applied heat

Fraction 1 in Table A-2 contains soluble metal easily interchangeable with water by sorption-desorption processes.

Fraction 2 in the table contains metal carbonates (or other forms susceptable to release by changes in pH), and bound hydrated oxides (susceptible to release under reducing conditions).

Fraction 3 contains metal bound to organic matter of biogenic origin. This fraction includes metals generally found adsorbed to living organisms, detritis, coatings on proteins, fats, mineral particles, etc. easily released under oxidizing conditions. The conditions described in Table A-2 for this fraction less agressive than earlier procedures (Fernandez *et al.*, 2000) that relied upon sequential treatment with combinations of hydrogen peroxide and nitric acid, followed by nitric acid with ammonium acetate.

Fraction 4 primarily contains residual metal found in elementary form, and in the crystalline structure of primary and secondary minerals, silicates, cements, passivated oxides, *etc*. These can only be extracted under tough, strong acid conditions.

Experimental conditions of the soluble and exchangeable fraction were applied to one quarter of a quartz filter (Cascade impactor, PM size $< 0.61 \ \mu m$ average aerodynamic diameter). Then in sequence, extraction of carbonates, oxides and reducible fraction was applied to the residue of the backup filter treated with the previous fraction of extraction reagents, and so on until the fourth fraction. Chemical speciation was carried out in polypropylene centrifugal tubes. Fifteen millilitres of each reagent was consistently added to the tubes. Extractions were carried out in a rotator at ambient temperature. Centrifugation was performed at 5000 rpm for 10 min.

Once the extraction process was complete, the volume in the tube was reconstituted, and metals concentrations measured by ICP-AES. The matrix effect due to the particle and filter matrix was studied through the standard addition technique in the four speciation fractions. There was no evidence of a matrix effect. Calibration curves were prepared from same matrix as each one of the four fractions. A set of unexposed backup filters was analysed using the same procedure used for

actual samples. The mean unexposed filter value was subtracted from each sample to obtain the best estimate of each element in the particulate matter.

Fraction	Ni (percent)	Со	Pb	Cu	Fe
Fraction1	39.9 % [Ni ^{II}]	35.1	3.8	26.5	3.7
Fraction 2	19.1 % [Ni ⁰]	27.9	33.2	9.7	15.9
Fraction 3	28.1 % [from insoluble Ni ^{II}]	12.1	35.3	42.7	25.8
Fraction 4	12.9 % highly insoluble, dissolved and analysed as Ni ^{II}	24.9	27.7	21.1	54.6

	Table A-3 Metal	speciation	of fine urban	particulate matter
--	------------------------	------------	---------------	--------------------

^a Adapted from Fernádez Espinosa et al., 2002.

X-Ray Absorption Fluorescence Spectroscopy

The first paper to mention the use of this spectroscopic tool to probe the speciation of metals in environmental samples was published over 20 years ago (Jaklevic *et al.*, 1980). The approach was to use linear combinations of XAS spectra to quantify the different fractions of metal compounds present in air particles. Despite the fact that this technique has been applied as a research tool for some time, its use can not be considered routine of commonplace in the field environmental analysis. Within the last decade, an increased number of high energy X-ray research facilities have been constructed that permit the examination of fundamental chemical states. The construction of various synchrotron radiation rings has provided the scientific community with intense X-ray photon sources that can be used to probe the local coordination environment of most of the metals of environmental importance (Gaillard *et al.*, 2001). The application of X-Ray Absorption Fluorescence Spectroscopy (XAFS) to environmental samples has flourished since the establishment of the theoretical foundation for the interpretation of its spectra (Sayers *et al.*, 1971; Teo, 1986).

The analysis of XAFS spectra is well described in the literature (Huggins *et al.*, 2000a). Basically, the spectrum is divided into separate \underline{X} -ray <u>absorption near-edge</u> <u>structure</u> (XANES) and extended XAFS (EXAFS) regions. An *absorption edge* is that region of the emission spectrum of an element where the energy dependence of the photoelectric cross section of an element can be measured. These may be at the K shell absorption spectrum for a particular atom (also referred to as the K-shell binding energy or *K edges*) (Jaklovic *et al.*, 1980). Each region is analysed separately. This method is attractive since it is element specific, it can be applied to crystalline or amorphous samples, and it is thought to be non-destructive.

XAFS spectroscopy records the energy dependence and measures the variation (fine structure) of the X-ray absorption coefficient associated with one of the characteristic *absorption edges* of the absorbing element (*e.g.*, Ni, Cr, As or other metal). The technique is performed at a synchrotron source in order to take advantage of the high intensity and other properties of synchrotron radiation (Jaklevic *et al.*, 1980; Huggins *et al.*, 2000a). The energy scale of the XAFS spectra for each element is calibrated with respect to the position of the corresponding absorption edge in a standard material. Standard materials may include pure metal foils or metal salts in various oxidation states (Giauque *et al.*, 1986).

In the non-destructive analysis of metallic species, the XANES region is used without significant further manipulation as a *fingerprint* for the occurrence of the element in the experimental material under investigation. Data from the EXAFS region, on the other hand, requires additional mathematical manipulation.

XAFS spectroscopy has been used to speciate both nickel and chromium in samples of residual-oil ash. An analysis Ni and Cr XANES spectra suggested that both elements were most likely present in the ash as the sulfates, NiSO₄•*x*H₂O and Cr₂ (SO₄)₃ • *x*H₂O respectively (Huggins *et al.*, 2000a). A comparison of the Ni XANES spectra for various standard nickel compounds shows that the spectra of nickel sulfides is very different from that of Ni compounds observed in residual oil ash. The best agreement for the spectrum of the ash was that exhibited by crystalline nickel sulfate (Huggins *et al.*, 2000b). Quantification and description of the differences observed at the absorption edges contribute to the characterization of chemical species in the environmental sample.

XANES and Particulate Matter Samples

A significant proportion of urban respirable PM₁₀ and PM_{2.5} may derive from combustion of fossil fuels (electrical power generation, vehicular exhausts). Such particulate contains variable quantities of metals. XAFS spectroscopy was performed at the S, Cl, V, Cr, Mn, Cu, Zn, As, Br and Cd K edges for both the Urban and Diesel Standard Reference Material (SRM) samples available from NIST (Huggins et al., 2000b). A PM₁₀ filter sample of urban air collected in Lexington, Kentucky was only examined at the S, Cl, Cr and As K edges (Huggins et al., 2000a). Both the *coarse* (PM_{2.5+}) and *fine* (PM_{2.5}) particulate matter fractions generated from combustion of three residual oils, viz., low sulfur No. 6 (LS6), high sulfur No. 6 (HS6), and baseline No. 5 (BL5) have been analysed using XAFS spectroscopy to characterize metal species. Similar PM fractions generated by coal combustion of Pittsburgh bituminous coal from the eastern U.S. and Montana sub-bituminous coal from the western U.S., were also submitted for analysis. Bioavailable metal species were determined from PM-leachate after gentle treatment with deionized water. Additional, less soluble metal species, termed "not readily bioavailable" were determined from leachate of PM fractions after treatment with 1N HCl. Typically, the extraction protocol required samples ranging from 250 to 400 mg of the PM fractions were exposed to 50 mL solutions for times up to 1 hour with intermittent agitation (Huggins et al., 2004).

XAFS spectroscopy was performed on the solid residues of the leaching experiments as well as on the original unleached $PM_{2.5}$ or $PM_{2.5+}$ samples at the Stanford Synchrotron Radiation Laboratory (SSRL) at Stanford University, California, or at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory, New York. Typically, three to six separate scans were made and averaged to provide a single spectrum with an improved signal/noise ratio.

Table 4Distribution of Ni among sulphide, sulphate and oxide (Ferrite) forms for
ROFA PM samples and aquatic leaching residues by fitting XANES spectra^a

			Percent Ni as:		
Oil combustion as PM source	Nickel in µg/g	√ickel in µg/g Sulphate (Ni ^{II})		Ferrite Ni as Ni-Zn-	
Low Sulphur #6					
PM _{2.5}	480	66		35	
PM _{2.5} leach (H ₂ O)		16	21	72	
High Sulphur # 6					
PM _{2.5}	8020	92		8	
PM _{2.5} leach (H ₂ O)		29	49	25	
Baseline #5					
PM _{2.5}	8800	56	10	30	
PM _{2.5} leach (H ₂ O)	4870	18	22	60	

^a Adapted from Huggins et al., 2004.

Table 5Distribution of As among as As^{III}, and As^V in coal PM samples
and aquatic or acidic leaching residues by fitting XANES
spectra^a

		Percent Arsenic as:		
Coal combustion as PM source	Arsenic in µg/g	As ^{III}	As ^V	
Pittsburgh Coal PM				
PM _{2.5}	310	3	97	
PM _{2.5} leach (H ₂ O)		7	93	
PM _{2.5} Acid leach in HCl	—	39	61	

^a Adapted from Huggins et al., 2004.

XANES Spectroscopy and Environmental Monitoring Samples of PM2.5

The application of XANES spectroscopy to residues from simple leaching tests on PM fractions derived from the combustion of fossil fuels provides quantitative speciation of elemental species that are of significant concern for human health. The combined XANES and leaching protocol determines the potential "bioavailability" of such hazardous metal species. Arsenic (As^V) species were more readily dissolved than the more toxic As^{III} species in PM collected from combustion of coal. For heavy oils that contain Ni and Vanadium, the combustion products include residual oil fly ash (ROFA). PM_{2.5} as well as larger PM fractions showed evidence of readily bioavailable Ni in the form of nickel sulfate. A nickel-containing sulfide that was observed as a minor Ni component in the coarse PM_{2.5+} fraction was concluded to be less readily bioavailable based on the

criterion of solubility in aqueous or acidic leachate. This Ni-containing sulfide in ROFA PM was not readily identifiable on the basis of the XAFS data presented (Huggins *et al.*, 2004).

It may be questionable whether sufficient sample size would be available for XANES analysis from routine monitoring samples in the Sudbury area. It may be more realistic to pool samples based on similar meteorological or other characteristics. This might be a means to provide a general characterization of the metal species in air samples over a given period. Unlike the urban particulate analyses performed by Fernádez Espinosa *et al.* (2002) on fine PM (<0.61 μ m), the methods for speciating metals in the environment by XANES remains in the experimental and developmental stages.

Electrothermal or Acetylene Flame Atomic Absorption Spectrometry

Profumo *et al.* (2003) have suggested an alternative analysis of nickel-containing samples or residues Analysis of nickel-containing soluble fractions were conducted by electrothermal atomic absorption spectrometry (ETAAS). Electrothermal measurements were completed using a Shimadzu AA-660 1G spectrometer with a graphite furnace atomizer (Shimadszu GFA-4B) (Profumo *et al.*, 2003). The limit of detection for nickel with this apparatus (LOD) = $1.0 \ \mu g/L$; limit of quantification $3 \ \mu g/L$; linear absorbance-concentration range from 3 to $15 \ \mu g/L$.

Electrothermal (Graphite furnace) (ETAAS) or acetylene flame (FAAS) Atomic Absorption Spectrometry:

The principle of Ni speciation in a solid sample is based on determination of Ni extracted from the solid after some treatment. Detectable levels of nickel can be measured (1) in a solution or (2) in an insoluble residue of unextractable material. In either case, it is nickel that is registered, not the form of the metal present in the particulate matter that is characterized.

Nickel determination can be performed with various analytical techniques including spectrophotometry, atomic absorption spectrometry (methods differ according to the method of atomization: flame atomic absorption spectrometry [FAAS] and/or electrothermal atomic absorption [ETAAS]), inductively coupled argon plasma optical emission spectrometry (ICP-OES), ICP-MS and voltammetry.

Analysis can also be completed by a less sensitive method employing FAAS (Perkin-Elmer 1100B atomic absorption spectrometer). Flame atomic absorption spectrometry is much less sensitive than ETAAS, and gives a much less sensitive detection limit: Linear absorbance-concentration range from 500 to 4000 μ g/L (LOD = 0.07 mg/L; LOQ = 0.35 mg/L). Prior to speciation analysis, the total nickel in a sample can be determined after aggressive acidification of a portion of the sample (Profumo *et al.*, 2003). For example, a procedure to determine total nickel was as follows: In a teflon bomb, the nickel standard or sample was dissolved in 1:3 :: HNO₃ (70%): HCl 37% with a "few drops" of HF (48%) at 140 °C for 8 h. At the end of the treatment, acid was evaporated until the white fumes disappeared, and the residue dissolved in water volumetrically for analysis.

Metal Speciation Task Force Minutes of Meeting November 3, 2004 – 10:00 CEI Offices

Attendees: INCO	Bruce Conard	Glen Watson
Falconbridge	Denis Kemp	
MOE	Ron Bell Randy Jones Brian McMahon (by phone) Mary-Ellen Starodub	Brendan Birmingham Dave McLaughlin Rusty Moody
SARA Group	Douglas Bryant Suzanne Goldacker (recorder) Elliot Sigal	Glenn Ferguson Rob Irwin Chris Wren

Sudbury District Health Unit (SDHU) – not attending

Agenda:

- 1. Introduction
- 2. Objectives of speciation analyses in the context of the Sudbury Soils Study (*e.g.*, relevant metals requiring speciation for HHRA and ERA)
- 3. Overview of relevant metal speciation options
 - Sequential leach methods (*e.g.*, modified Tessier, NiPERA/Zatka, SM&T extractions)
 - Trace mineral analysis
 - Bulk mineral analyses (*e.g.*, x-ray diffraction analysis, QemSCAN analysis, electron microprobe analysis)
 - X-ray absorption fluorescence spectroscopy (*e.g.*, XANES spectroscopy)
 - Others?
- 4. Discussion of advantages/disadvantages of each method
- 5. Recommended speciation protocol for Sudbury Soils Study
- 6. Adjournment

A record of the discussions and a listing of the presentations that took place during the meeting are provided below, in the approximate order that they happened.

Introductions and general discussion:

- Glenn F.Provided an introduction on behalf of the SARA GroupElliotProvided an overview of how metal speciation can be used in HHRA. He
- pointed out that the usefulness of speciation can be used in HHRA. He speciating the other COCs doesn't provide a lot of additional information

for the HHRA since the toxicological data generally does not distinguish between species of those metals. The SDHU has expressed concern over the emphasis on only nickel; therefore the Task Force should discuss the need to speciate the other COCs. Speciation of the other COCs can provide information on their bioavailability, but other planned bioaccessibility studies (*i.e.*, stomach leaching soil metals bioaccessibility, veggie garden study to look at movement into vegetables, modelling of movement of metal species into vegetation) will also provide these data. Glenn F. There is a need to distinguish in this meeting between risk assessment and risk management needs. Speciation of the other COCs could be useful in risk management to distinguish between natural and anthropogenic sources, but is not a required element for the HHRA itself. In selecting COCs for speciation, Bruce would prefer to consider the Bruce health endpoints of a particular COC, and what the importance of speciation is to that endpoint. For oral intake, speciation is not very important because knowing the bioaccesibility will tell you how much is being taken into the body. For dermal absorption, you need to know the metal species in order to estimate their solubility into sweat, but according to the literature on occupational exposure, dermal exposure is a very minor route. So, from the perspective of dermal exposure, it would be nice but not vital to speciate the COCs. For inhalation exposure you need to consider cancer and non-cancer endpoints in the respiratory system, and these are species specific, particularly for Ni and As. Without speciation of Ni and As, risk assessments tend to assume that the entire exposure is to the most potent form (e.g., nickel subsulfide, arsenic trioxide), and then backtrack to say that part of the exposure was to less potent species when the risk assessment shows an extreme level of risk that is obviously not being experienced. This is not the most compelling way to talk about risk.

Discussion on types of sample to speciate:

Chris	Pointed out the need to resolve which COCs and which samples types it is important to speciate. Air filters are the primary sample type to speciate
Elliot	Soil and indoor dust samples are next in importance to speciate, although
	it's uncertain that there will be enough indoor dust sample to speciate. For garden vegetable samples you can assume 100% bioavailability, and there
	is literature to back this up, so it is not important to speciate.
Bruce	In water you can assume 100% bioavailability, so it is not important to
	speciate, except to determine organic vs. inorganic As.
MOE	MOE representatives generally agreed with these statements.
Glen W.	Asked how important was it to speciate TSP, since by virtue of its particle size it's not necessarily available.
Bruce	If PM_{10} levels will be used to calculate the amount of dust inhaled, then
	that fraction should be the one speciated.
Glenn F.	Agreed with Bruce and stated that PM_{10} will be used in the risk
	assessment.

Mary Ellen Pointed out that it may be useful to speciate TSP because it's the same size fraction as soil, and there's a relationship between resuspended soil and TSP in air.

Presentation on analytical options for metal speciation (Rob Irwin)

General discussion of speciation techniques

Bruce	Pointed out that communicating the results of chemical analyses to the
	public is difficult because they expect definitive answers, and we need to
	address the expectations of the public with regard to certainty.
	Bruce believes we need a technique that proves the presence or absence of
	nickel subsulfide.
Rob	Hadn't seen any techniques to separate the nickel sulfides in the literature.
Brendan	Suggested the Wong et al. voltametry approach as a method that can
	distinguish between sulfides in a solid sample. He promised to provide
	five papers by Wong <i>et al.</i> to Bruce.

Bruce felt that the NiPERA/Zatka method should be referred to by a different name, as the method cited by SGS-Lakefield has not been officially endorsed by NiPERA, and is not a public document. The method referred to as the NiPERA/Zatka method in the Metal Speciation Rationale (Draft Version 1.3) and in Rob's presentation, is called "modified Zatka" here. There was some confusion about whether people were talking about Tessier vs. modified Tessier or Zatka vs. modified Zatka. Bruce tended to discuss the original method.

Discussion of the modified Tessier and modified Zatka sequential leaches

Bruce	The Tessier method was developed for sediments, while the Zatka method
	was developed and validated for workplace air conditions (specifically
	sulfidic ore processing). Bruce pointed out that the modified Zatka
	method hasn't been peer reviewed, and that the Zatka method isn't
	completely infallible (<i>e.g.</i> , particle size can influence results).
Rob	The modified Zatka method was validated for a broader array of sample
	types and operations other than the Zatka method.

Discussion of QemSCAN analysis:

Dennis QemSCAN has limitations, but is good for analysis of fine materials.

Discussion of the XANES spectroscopy technique

Douglas XANES is a high energy light source method to speciate metals. The analysis depends on subjective comparisons, so reproducibility is difficult. It is being used by Dr. Mark Lamoureux at St. Marys University in Nova Scotia, but it is *very* time consuming and the equipment is very finicky. A separate run is required for each chemical being speciated. The method is mostly used for soil samples, but has been applied to air samples. Fairly large amounts of sample are required. The sensitivity of the method can't be judged against the sequential leach methods with the information at

hand. Overall, the method seems more appropriate to a research program than a risk assessment.

- Bruce So far, there is only a very primitive library of "known spectra" (for making the subjective comparisons), but the method promises to be useful in the future. The method could be used as a complimentary technique to add to the weight of evidence in this risk assessment, but more data can lead to more questions. It should have only a very low weight, if it's used at all.
 Dennis Beam time for XANES should be arranged immediately if the technique is used.
 Chris The SARA Group may not be in favour of XANES analyses if there is no use for the data in the risk assessment. A very few samples won't be useful.
- Rusty XANES was useful in Port Colborne.

Discussion of Other Methods

- Bruce XRD is not suitable for the types of samples we're likely to get, and it's not quantitative.
- Mary Ellen Crystallographic analysis of As in soil (*e.g.*, with the Canadian Light Source method) will provide information on form which could help explain a lack of human health problems.

SRM and XRD analyses could provide information on whether the metals are on the inside or outside of particles, or provide additional information on its form. SRM and XRD can measure many metals/compounds simultaneously.

Mary Ellen noted that Batonneau *et al.* $(2004)^1$ developed a method to find relative amounts of metal species on a mass basis. The method could be used to compare/validate data.

Discussion of arsenic speciation

Randy There may potentially be a need for another sequential leach to speciate arsenic in soil, since Tessier won't give an adequate detection limit.
Glenn F. The appropriateness of Tessier for arsenic speciation should be judged based on what information is needed for the risk assessment.
Elliot It's unclear how speciating arsenic will improve the risk assessment. The Falconbridge urinary arsenic study is our most powerful tool to determine bioavailability through the comparison with the control community.

Elevated levels in Falconbridge relative to the control community would indicate a need for further work to determine where the arsenic is coming from. If levels in Falconbridge residents are not elevated, then we know that the arsenic in soil is not bioavailable.

¹ Batonneau, Y., Bremard, C., Gengembre, L., Laureyns, J., Le Maguer, A., Le Maguer, D., Perdrix, E., and Sobanska, S. 2004. Speciation of PM₁₀ Sources of Airborne Nonferrous Metals within the 3-km Zone of Lead/Zinc Smelters. Environ. Sci. Technol. 38:5281-5289.

Mary Ellen	Due to the short half life of arsenic in the body, the urinary arsenic study will give you a snapshot of arsenic exposure, which may not be representative of the work case or even the average for that individual. Exposure for this snapshot won't be controlled, therefore the information won't be as strong as we'd like. A lot of weight shouldn't be put on the results of this one study. An acid gut extraction for arsenic will likely underestimate bioavailability, since the greatest dissolution of arsenic occurs under alkaline conditions in the small intestine. If we could mathematically determine the percent bioavailability at which we have an unacceptable risk, then the acid + alkaline gut extraction could tell us if we're near the threshold and need to investigate further.
Chris	The urinary arsenic study will be powerful. The community profile will mean that we won't have to look at an individual at a single point in time.
Bruce	The urinary arsenic study can't tell you quantitatively what the exposure was. It will tell you the level of body burden, but not what fraction of arsenic in the stomach is taken up. The study will be of limited use in the risk assessment. Since there is no standard method for arsenic speciation, there are two options 1) develop a method (not recommended due to costs) or 2) take a protective approach and assume that all ingested arsenic will be taken up.
Elliot	Assuming that all the arsenic will be taken up would give predicted cancer rates of well over 1 in 1,000,000. Propose that we use a weight of evidence including the urinary arsenic study and literature data on bioaccessibility.
Glenn F.	The Technical Committee agreed with the proposed bioaccessibility methodology of doing a simulated stomach extraction only, due to the considerable uncertainties inherent in the second phase for the non-lead COCs. Are we now recommending adding small intestine?
Bruce	The small intestine extraction will introduce more uncertainty. There are weaknesses in the Taiwanese and Chinese studies on which the slope factor was based.
All	There are no advantages at this point to speciating arsenic or doing a bioavailability study, since there are no accepted techniques and even the ICP-MS analysis of arsenic is problematic. The Tessier leachate will not be analyzed for arsenic and no additional studies will be added at this time. We can consider adding arsenic speciation or bioavailability studies later if the results warrant it. This treatment of arsenic will have to be carefully communicated to the public.

Selection of speciation technique(s)

Dave The SEM, XANES and Tessier techniques were used for Port Colborne. You cannot rely on only one technique, and different techniques may be more suitable for difference matrices. We must remember that the time and money spent on multiple tests may not lead to increased understanding.

- Rusty For air filter samples, it may not be possible to use a second speciation technique if both are destructive methods and there is no air filter left.
- Glenn F. We appear to be advocating the Tessier method, based on Bruce's comments on the appropriateness of the Zatka and modified-Zatka methods. However, would the modified Zatka technique, since it was developed with Ni in mind, be more appropriate for Ni speciation, particularly on air filters, than Tessier?
- Bruce By the time it is deposited, emitted Ni is no longer in the same form as it was in the industrial situation, it is closer to the forms found in sediment (the medium for which the Tessier method was developed). Tessier is more likely than Zatka or modified Zatka to show the best information. If Tessier is the base-technique, then for a second technique to be used on perhaps 50% of samples, Bruce would prefer that we not select another sequential leach. XANES could be used on 2-5% of samples as the third technique in the suite.

If there is not enough sample to use a suite of techniques, the only solution is to use different samples collected from the same time and place. It is not necessary to use the same technique on both soil and air filter samples, if a benefit of some technique other than Tessier can be demonstrated for air filters.

Identifying a technique with a sufficiently low detection limit for arsenic may be a problem.

- All It was decided that:
 - It is appropriate to use a weight-of-evidence approach to evaluate speciation of metals.
 - The Tessier sequential leach analyses will be used as the primary method for soil and dust speciation, and air filters where sufficient material have been collected.
 - QemSCAN or similar bulk mineralogical analyses will be used as a supplemental method for all evaluated samples (10% of samples submitted for sequential leach analyses). Where there is insufficient material in a PM10 filter to complete sequential leach analyses, QemSCAN analyses may be selected as the alternate primary method.
 - XANES and other "cutting-edge" analytical methodologies will not be pursued at this time, given they are still largely experimental, and also have time and cost limitations. However, if these analyses were pursued outside of the risk assessment, and data were available in time, then the results of these analyses could be used as part of the weight-of-evidence approach.

Discussion on Validation of Analytical Results

Chris We budgeted to speciate 100 samples. Scientifically, is that a reasonable number?
 Prefer analysing standard reference materials (SRMs) rather than split sample analyses to validate the lab results.
 Rob SRMs for Tessier are difficult.

Rusty	The SRMs must have been developed with the same analysis used to
	analyze them here.
	Failing a split sample analysis, the lab could reanalyze samples 10 times
	on 10 different days, and also volunteer to participate in a round robin.
Randy	Perhaps the National Institute of Standards and Technology (NIST) lab
	could do splits, since we're using the same method.
λ7	

No consensus was reached on this topic.

Discussion on Sample Preparation and Archived versus New Sample

Rob	The easiest sample preparation method for the lab is to air dry and screen
	soil samples. This will result in some modification of the sample. Will
	we accept that since the method is simple?
Randy	Air drying and screening the 2 mm fraction is probably best.
	Archived sample could be used.
Bruce	Use of archived samples led to public suspicion over the method in Port
	Colborne.
All	New (non-archived) samples will be used, as additional samples are currently be collected as part of the indoor dust survey, and only a small
	amount is needed. Samples will be air dried and screened.

Discussion on SDHU Comments

Elliot	What was agreed here does not quite agree with the comments from
	SDHU. They want to know why we're focussing on nickel.
All	The focus on nickel for metal speciation will be explained in the Metal
	Speciation Rationale.

SGS Lakefield Research Limited

A Combined Mineralogical and Analytical Study of

Speciation of Chemicals of Concern (COC's) in Soils,

Dusts and Air Filters

prepared for

THE SARA GROUP

LR 11007-001 – MI5001-AUG05 August 18, 2005

NOTE:

This report refers to the samples as received.

The practice of this Company in issuing reports of this nature is to require the recipient not to publish the report or any part thereof without the written consent of SGS Lakefield Research Limited.

Table of Contents

Page No.

Table of Contents	2
Executive Summary	3
Introduction	4
 Analytical Procedure Mineralogical Procedure 	5 6
Results – Dust Samples	7
Results – Air Filter Samples	11
Results – Additional TSP Air Filter Samples (2004040811 & 2004040722)	17
Results – Soil Samples	17
Conclusions and Recommendations	22

Executive Summary

An extensive suite of dust, soil and air-filter samples were submitted to SGS Lakefield Research for sequential, Tessier leach analyses and corroborating mineralogical analysis were performed on a selected number of the samples. Leach work was performed by Analytical Services under the supervision of Mr. R. Irwin and the mineralogical work by Mineral Technologies under the supervision of Mr. C. Hamilton.

An outline of the methods employed as well as complete results are presented in the body and appendices of this report. An attempt at reconciling the mineralogical and analytical results is also presented, along with key findings of the mineralogical study which provide important links between sets of data and, as a consequence, a rational basis for interpreting analytical results.

Despite a few discrepancies and variations, both broad and specific correlations can be drawn and apparent shortcomings are explicable in terms of differences in approach and mineralogical evidence. This combined approach provides a prima facie case and rationale for interpreting COC deportment in Sudbury Area materials.

SGS LAKEFIELD RESEARCH LIMITED

Christopher C. Hamilton M.Sc., FSAIMM. Consulting Mineralogist Robert C. Irwin B.Sc. Chief Chemist

Joe Zhou, M.Sc. Group Leader, Process Mineralogy

Experimental Work by: B. Le Bouef C. Gunning N. Morton

Introduction

In order to study the deportment of chemicals of concern (COC's), particularly Ni, Pb, Co, Cu and As, in Sudbury Area soils, dusts and airborne particulates, an integrated study was commissioned by C. Wren and Associates under the auspices of the Sudbury Area Risk Assessment (SARA) Study Group. In particular, a Tessier leach method was chosen to partition COC's into categories or groups of species representing bio-available through to sequentially more resistant fractions.

After analytical results were obtained, mineralogical studies were performed on selected samples. In this part of the study, corroborating mineralogical evidence was sought that would assist in the identification and explanation of speciation results. This combined approach was specifically aimed at providing mineralogical evidence for benchmarking purposes.

1. Analytical Procedure

The sequential extraction procedure of Tessier et al (1979) was adopted for the present study with one modification to omit an easily reducible step and generate a reducible fraction in a single aggressive stage (see Table 1, Step 3). The method and nominally defined speciation fractions are outlined in Table 1.

Definition	Fraction Sought	Method Used
1. Exchangeable	Metals bound by	1 M MgCl ₂ shaken for 1 hr. at neutral pH
	sorption/desorption processes.	
	Readily bio-available.	
2. Carbonate-hosted	COC bound to carbonate. Bio-	Residue from 1 leached with sodium
	available subsequent to	acetate (NaOAc) adjusted to pH 5 with
	degradation/dissolution of	acetic acid (HOAc) to completion.
	carbonate.	
3. Reducible*	Bound to Fe-Mn-Oxides.	Residue from 2 leached with 0.04 M
	Complete free Fe-oxide	$NH_2OH.HCl in 25\%$ (v/v) HOAc at 96°C.
	dissolution evaluated.	
4. Organic-bound or	Bound to organic matter.	Residue from 3 leached with 30% v/v
Oxidizable.		H2O2. 0.02 M HNO3, 85°C.
		3.2 M NH ₄ Ac (20% v/v HNO3) added,
		shaken for 3 min.
5. Residual	Nitric-acid soluble species.	Residue from 4 leached with 25% v/v
	Excludes silicate-bound and thus	HNO ₃ heated to dryness. Then leached in
	inert/stable/benign COC's	10% v/v HNO ₃ .

Table 1: Tessier Leach Fractions and Methodology.

* A combined leach, rather than 2 steps usually separating an easily and moderately reducible fraction. (E.g. easily reducible targets Mn-Oxides.)

For comparative and reconciliation purposes, a strong acid HNO₃ digestion was also performed on a replicate sample. In most cases this value does not exactly correspond to the cumulative leached COC values but this difference is not considered significant in the light of compound error of precision and accuracy as variance is generally less than 10%. Where these differences are considered significant, special mention is made in the body of the report.

2. Mineralogical Procedure

The mineralogical analyses were carried out by scanning electron microscopy (SEM) using a Leo 440 SEM combined with energy dispersive X-ray spectrometry (EDS) and equipped with both a secondary electron and back-scattered electron detector. The EDS system was a light-element-capable Oxford ISIS unit providing the opportunity of identifying organic matter and easily discriminating sulphate and sulphide species.

Air filter samples were cut and mounted directly on a SEM plate, while soil and dust samples were prepared as "sprinkle-mounts" on 13 mm Cambridge style SEM stubs to which were affixed double-sided round carbon stickers. Sprinkle mounts were prepared by gently placing the sticker-affixed stub into the sample in a 50 ml polypropylene bottle and shaking the bottle until the carbon sticker was covered. A gentle spray with compressed air removed loose material not adhering to the double-sided sticker. After preparation, all samples were carbon-coated to render surfaces conductive under the electron beam.

SEM Operating conditions were 25 kV accelerating voltage and 3 nA incident specimen current. Qualitative mineral identifications were made using 10 second counting times and semiautomated, systematic scans of sample surfaces were performed, stopping at candidate particles to identify and characterize grains when COC species were encountered. For each COC particle, measurements, qualitative identifications as well as photomicrographs were taken. For each scan, a target population of 30 occurrences were sought in an allotted 3 hour search period: lower statistics were encountered within the allotted time at low total grades. Relative abundance data of heavy metal species were determined by summing the total area of individual grain species and dividing by the total area of all counted heavy metal grains.

Results – Dust Samples

Appendix 1 provides raw data for all dust samples and Figures 1 and 2 illustrate summarized Tessier and mineralogical data respectively. The following discussion, along with mineralogical and petrographic evidence is devoted to comparing the analytical and mineralogical results to provide an explanation of the Tessier data.

Tessier and mineralogical data reveal the following points:

1. As and Se data are sparse, with few significant levels of reducible Se whereas organically bound As predominates. Although arsenopyrite (FeAsS) was the dominant mineralogical As-carrier found in this study, there is insufficient As in this form to account for all, and certainly not most As. There is evidence that Se occurs in metallic Pb-bearing species and it is possible that As may similarly be associated with Pb. However, since most mineralogically bound As in the Ni-rich concentrates historically produced in the Sudbury district occurs as Ni-arsenides, and given the smelting behaviour of As, it is not unexpected that As would occur bound to fugitive coke-like emissions. Photomicrographic evidence of porous, carbon-rich particles (Figures1 and 2) has been documented in this study, consistent with coke.

Figures 1 and 2. SEM/BSE photmicrographs (1.) A Pb-sulphate-rich particle composed predominantly of organic material rich in K, Al, Ca, S and Si, probably representing slag/coke (584-1308-18). The bright particle at right is a porous Fe-oxide, probably hematite. (2.) A partial, high magnification view of a porous, carbon-rich particle hosting two inclusions of Ni-sub-sulphide (Ni₃S₂). (05-51311-5). Yellow boxes denote areas analysed by SEM/EDS yielding detectable Ni and Cu levels.

2. Sequential leach Pb results generally show very low (9 ppm on average) residual values and somewhat higher exchangeable (28 ppm on average) and carbonate (78 ppm on average) Pb values. Average reducible and organic values of 187 and 158 respectively show that Pb behaves chemically similarly to As and Se. Mineralogical evidence, of which Figure 1 is fairly representative, demonstrates that a substantial proportion, if not most, Pb is present as Pb-sulphate. It is clear that sulphate-Pb completely enveloped by organic material may be protected from complete reducible leaching. Subsequent organic stripping would liberate this Pb, rendering it amenable to leaching. The proportion of sulphate- to metallic Pb identified mineralogically is consistent with the ratio of combined reducible+organic to residual Pb, suggesting that metallic compounds account for the residual Pb.

Figure 3. Tessier results for Pb normalized to 100% for all dust samples, with an average at far right.

3. Cu data, in contrast to Pb, show exceptionally high organic extractions. On balance, mineralogical data are difficult to reconcile with the sequential leach data, suggesting that a significant proportion of Cu has not been mineralogically accounted for. In an attempt to identify a significant Cu-host that would redress this balance, 5 samples (1, 6, 11, 16 & 21) were briefly examined for the presence of alternative forms of Cu. Results showed that a significant number of organic particles which show no evidence of any oxide,

sulphide or metallic Cu species nevertheless show Cu and Ni contents at the 0.5 % level (Figures 5 and 6).

Figure 4. Tessier results for Cu normalized to 100% for all dust samples, with an average at far right.

Figures 5 and 6. SEM/BSE Photomicrographs. (5) Fibrous, organic particle (Sample 529-51297) containing detectable Cu and Ni contents. The brighter grain beneath is a pyramidal Fe/Ni-sulphate crystal. (6) Apart from the Pb- and Cu-bearing particle in centre view, the particle at the lower left (white arrow) carries significant Cu and Ni contents. (Sample 600-5781)

- Except for absolute values, Ni and Co sequential leach results are very similar and only Ni results are shown in Figure 7. Substantially higher residual extractions than other metals imply persistence of identified Ni-alloy into this fraction.
- **5.** Apart from organically bound Ni discussed regarding Cu above, a highly complex Nispecies assemblage has been noted in several dust samples. In particular, mixed composite particles of metal-oxide, sulphate and metallic and sometimes even sulphides indicate an assemblage usually only witnessed in refinery products. Sulphate species similar to those detected in the air filters were detected in the dust samples.

Figure 7. Tessier results for Ni normalized to 100% for all dust samples, with an average at far right.

Figure 8.

SEM/BSE Photomicrograph of a striated Ni-alloy particle with a mixture of slag-like material, Ni-oxide and Ni-sulphate.

Results – Air Filter Samples

Appendix 2 provides raw data for all air filter samples and Figures 9 and 10 illustrate summarized Tessier and mineralogical data respectively. As before, analytical, mineralogical and petrographic evidence is presented in the following section to assist in explaining the Tessier data.

Tessier and mineralogical data reveal the following points:

- 1. As with dust samples, air filter results show sparse As data, with detectable exchangeable and organic values only. A single Ni-As grain was detected mineralogically, consistent with low analytical values. By contrast, Se data show detectable data for all fractions, with organic fraction hosting highest values on average. No Se-species were detected mineralogically,
- 2. It is difficult to reconcile or explain the Tessier results except to state that Se is known to correlate with metallic and/or sulphide-Cu species. Although lower-than-detection level results are witnessed in As data, detectable As data appear to show an even spread between exchangeable and organically-bound As. This suggests a similarity to dust data in terms of organically-hosted As, and mineralogically unaccounted-for exchangeable As-species. This is consistent with higher sulphate species in general (Ni and Pb) encountered in the filter mineralogy.

Figure 9. Tessier results for Se normalized to 100% for all filter samples, with an average at far right.

3. Sequential leach **Pb** results for filters also show high exchangeable values (as with As; demonstrating a probable mineralogical affinity of arsenate and sulphate species). An overall systematic increase in residual values with decreasing exchangeable values is witnessed, and is supported Mineralogically in that metallic species are more common in the latter three samples.

Figure 10. Tessier results for Pb normalized to 100% for all filter samples, with an average at far right.

- **4.** Sequential leach **Cu** results for filters also show a residual Cu fraction increasing in the same order as for Pb, but exchangeable Cu values are erratic.
- 5. Exchangeable Cu data suggest highly variable and significant sulphate-Cu species but are not consistent with mineralogical data. It is likely that these species were missed in the mineralogical study and to test for this possibility, additional inorganic and organic species were sought separately. Photomicrographs depcted in Figures 12 and 13 reveal difficult-to-resolve yet detectable phases, probably sulphates and similar species which form matted clusters, partial coatings and films which appear to have precipitated or settled on the filters in a different manner than simple entrapment of PM10 particles within filter fibres.

Figure 11. Tessier results for Cu normalized to 100% for all filter samples, with an average at far right.

Figures 12 and 13. SEM/BSE Photomicrographs. (12) A composite particle of about four Cusulphide grains set in a lower BSE intensity Ni-sulphate matrix (Sample 200404810). Despite poor resolution, note also the jagged appearance of some of the filter fibres, providing evidence of a likely surface coating to some fibres (white arrow denotes clear fibre, yellow arrow a coated fibre which shows evidence of elevated Cu and Ni levels). (13) Two high-BSE species, a Pb-sulphate and a Cu-sulfide trapped in filter fibres heavily loaded with unresolved species of Cu, Co and Ni, showing both S and O, the latter in excess of oxygen typically associated with Si-fibres.

6. Tessier Co data (Figure 14) are somewhat similar to Cu data but very little mineralogical data on Co is apparent. High exchangeable values do, however, correlate with the presence of detectable oxides as well as the observation that Mn was noted by EDS with many anglesite and Fe-Ni-oxide grains.

Figure 14. Tessier results for Co normalized to 100% for all filter samples, with an average at far right.

- 7. Ni leach results, unlike the soil data, do not directly correlate with Co results, indicating a closer affinity of Co with Cu. This is consistent with a control by refining processes and by inference, probable location to Cu-refining premises.
- 8. Significantly higher residual Ni values are characteristic of the air filter results relative to Co and Cu. This correlates with somewhat higher pentlandite mineral contents determined mineralogically. Again, residual Ni may be buffered by Ni bound by organics which may be released by the organic leach step (see figure 16)

Figure 15. Tessier results for Ni normalized to 100% for all filter samples, with an average at far right.

Figures 16 and 17. SEM/BSE Photomicrographs. (16) Two pentlandite grains attached to an ashed coke particle (sample 200404813, location 7). The coke/slag particle also showed detectable Cu contents. (17) A large Pb-sulphate grain (yellow arrow) and a Ni-sulphate (green arrow), together with abundant filming on fibres (blue arrows). Sample 200404810, location 6. The fact that these species are of a lower BSE signal intensity than sulphates suggects they are probable sulphates and/or oxy-hydroxy-sulphates or hydroxide species.

Results – Additional TSP Air Filter Samples (2004040811 & 2004040722)

After preliminary review of the data, two additional TSP air filter samples were submitted as part of a due diligence study. SEM results for these samples are presented in Appendix 2. These samples were selected for direct comparison against filters from similar locations and were significantly loaded with particulate material which is coarser than the original filters.

The search on TSP filter 2004040811 yielded no Ni-sub-sulphide.

Results from TSP filter 2004040722 did yield Ni-sub-suphide, consistent with results from filters 20004040724 and 2004040725.

Figure 18. SEM/BSE Photomicrographs of Ni species detected in (A) TSP filter 2004040722 and (B) TSP filter 2004040811. In (A), a small Ni-Sulphide (Ni₃S₂) identified as Ni-sub-sulphide is illustrated. In (b), a large, plate-like millerite (NiS) grain is illustrated.

Results – Soil Samples

Appendix 3 provides raw data for all soil samples and Figures 19 through 24 illustrate summarized Tessier and mineralogical data respectively. The following discussion, along with mineralogical and petrographic evidence is devoted to comparing the analytical and mineralogical results to provide an explanation of the Tessier data. Results indicate:

- Without detectable exchangeable and carbonate As data not much can be said of As except that organic-bound As predominates. Only rare sulpharsenide species were detected in two soil samples, indicating non-detection of reducible and organic As-hosts. It is inferred once again that fugitive ash/coke/slag materials host most of this As.
- 2. Pb data indicate lowest exchangeable and carbonate levels in all sample types and organic and reducible values vary sympathetically. Considering the mineralogical data, reducible Pb appears to derive from liberated anglesite, whereas organic Pb derives from both adsorbed and occluded Pb-species in organics/ash.

Figure 19. Tessier results for Pb normalized to 100% for all soil samples, with an average at far right.

- **3.** As with Pb, **Cu** shows very little exchangeable and carbonate-values and residual values are constently low. The highest residual Cu yield (location 6 or sample 522) correlates with mineralogically detectable Cu-alloy, indicating that alloy is least susceptible to acid leaching.
- **4.** An apparent correlation between Tessier organic-Cu data and Cu-sulphides is indicated which if true, may simply reflect the mechanism by which Cu-sulphides are transported as occluded grains within fugitive ash-like emissions. Sulphide Cu levels are too low to account for all Cu and they would be expected to be fairly resistant to the Tessier leach procedure.

Figure 20. Tessier results for Cu normalized to 100% for all soil samples, with an average at far right.

5. Ni data, unlike Cu and Pb, indicate moderate levels of exchangeable and carbonate Ni. For Cu and Pb, the results imply these species do not survive the exterior environment. For Ni, equivalent species are either more resistant or newly formed mobile Ni species form in the environment subsequent to oxidation of released and non-benign Ni-species.

- **6.** The highest Tessier result is in the reducible Ni category, which correlates with a high mineralogically determined oxide group content. This provides direct evidence that oxide phases represent this leach category.
- **7.** A significant drop in organic-Ni relative to filter and dust samples supports the observation that sulphide is finer grained than these alloy/oxide particles and that the association with fugitive emissions is significant (Figure 22). It should also be noted that pentlandite can be derived from either ore materials or from smelter matte.
- **8.** It is believed that some species designated as alloys of Fe, Co, Ni and Cu are likely also oxide species. Figures 23 and 24 represent examples, from which it is evident that a range from metal rich to oxide-rich particles exist.

Figure 22.

Pentlandite grains (green arrows) enveloped by a slag/coke-like particle. This is a common associaton which provides evidence that these sulphides have been transported by fugitive coke/slag particles.

Sample 507ss./Location 3

Figures 23 and 24. SEM/BSE Photomicrographs. **(23)** An angular Ni-oxide particle with several protrusions of higher-BSE species, likely metallic (Soil sample 561ss). **(24)** A large rounded Ni-Fe-alloy particle with numerous rounded oxide grains adhering to the periphery (blue arrows).

Conclusions and Recommendations

The following points represent the major findings of this investigation:

- 1. Data have been presented to reconcile both mineralogical and analytical results of this study. Although difficult to interpret at face value, correlations emerge best when viewed in a between-material (i.e. soil, dust & filter) context. In particular, the following conclusions and inferences can be drawn:
 - a. Most mineralogically identified Pb is present as anglesite (Pb-sulphate) and no mineralogical evidence for speciation differences by Tessier leach was apparent. There is clearly a major proportion of mineralogically unaccounted Pb. Some Pb-sulphide may be present but Tessier data reveal exchangeable and carbonate-Pb which is inferred to be oxidic and unaccounted for mineralogically. More sophisticated techniques or methods should be applied to confirm this.
 - b. Moreover, for Pb-data, it is interesting that direct nitric leaches extract on average 39% less than the sequential leach. Petrographic evidence of occlusion by organics suggests an interpretation due to liberation of Pb species during the organic step.
 - **c.** Mineralogical Arsenic and Selenium data are sparse; measurement statistics preclude any correlations to be made.
 - **d.** In terms of copper, exchangeable Cu predominates in the filters, reducible and organic Cu in the dusts, and organic and reducible Cu in the soils. Mineralogically, filters were found to contain high and approximately equal proportions of Cu-Fe-sulphide and Cu-sulphide (chalcocite or Cu-matte) and evidence of sub-micrometer sulphates on filter fibres was found. Dust samples showed predominant Cu-sulphide and Cu-oxide, with substantially less Cu-Fe-Sulphide. Soil sample mineralogical results revealed that Cu-Fe-sulphide and Cu-alloy species predominate. Although a distinct Cu species bias appears to mask potential correlations, it is suspected that organic particles carrying fine sulphides

also affect speciation results. By virtue of their encapsulation in organic particles, organic Cu values can be taken as evidence of light (i.e. low SG) materials.

- e. On average, residual Ni values are higher than all other COC residual values for all data sets. Predominant Ni categories are roughly equal parts of residual and organic-Ni in filters, organic-Ni in dusts, and equal parts of reducible, organic and residual-Ni in the soils. Mineralogically, Ni-sulphides predominate (>66% combined) in the filter mineralogy, with lesser Ni-oxides (16%) and subordinate Ni-sulphates; these results are difficult to correlate with leach data. In dust samples, sulphide values drop on average (42%), with an increase in Ni-sulphate (11%) and oxide (21%) and significantly more metallic/alloy-Ni. These data are particularly difficult to reconcile with Tessier organic-Ni results, from which it is inferred that it is key to understand the mechanisms by which the organic fraction is leached.
- **2.** It is difficult to establish direct correlations between mineralogical and Tessier results for the following reasons:
 - a. The current mineralogical approach was adapted from a method designed to locate and characterize high atomic number species which normally show as high BSE intensity species under the SEM. As a consequence of the presence of sulphates and organic material hosting COC's, a bias has been introduced and difficulties in interpretation resulted.
 - **b.** There is a regrettable lack of information in the literature on the actual response and mineralogical influences on the Tessier leach procedures.
- **3.** Notwithstanding the above, differences in both Tessier and mineralogical data do however show comparable differences between the different materials, allowing certain

correlations and inferences to be made. Specifically, filters, dusts and soils show characteristics explicable in terms of speciation effects and likely provenance.

- 4. Mineral assemblages for most COC's are apparently common to all samples, but with relative proportions varying between filters, dusts and soils. The differences are consistent with: (1) presence and preservation of sulphates and organic particles (c.f. Figures 1, 2, 16 and 21) in air filters, (2) a high organic fraction in dusts (Figures 5 and 6), indicating a more airborne fraction and, (3) a high proportion of metal-oxide species (64 % combined Ni- Co- Cu-oxides) in the soil samples.
- 5. To confirm the inferences and correlations, particularly regarding bio-available and mineralogically unaccounted species, it is recommended that select materials be subjected to further leaches, and residues generated in the leach procedure be studied in order to unequivocally establish species categories.
- 6. After initial reviews of mineralogical data, two additional air filters (TSP filters 2004040722 and 2004040811) were submitted to test for the presence of heazlewoodite (Ni₃S₂). Results from filters in close proximity to these stations indicated the presence of Ni₃S₂. The TSP filter results confirmed the presence of Ni₃S₂ in TSP filter 2004040722 but not in TSP filter 200408040811.
- Given the statistical representation and the SEM/EDS limitations in the current study protocols, it is recommended that Ni-sub-sulphide be unequivocally confirmed by more sensitive techniques.

APPENDIX 1: Dust Results

Position				1	2	3	4	6	7
Sample	Minanal		Dessible Desitestion	502 57824	504 57822	510 05-1291	512 57826	513 05-1292	515 57830
COC	Mineral	Qualification/Interpretation	Possible Derivation						
Pb	anglesite Pb-Sn Pb-Cl Pb/Te/Se	PbSO4: May in cases be galena (PbS) Pb/Sn alloy: either solder or other Chloride a probable smelter emission Possible smelter alloy or oxide/sulphate	Smelting/Refining(?) Domestic(?) Smelting/Refining(?) Smelting/Refining(?)	5.7 0.0 0.0 0.0	3.1 0.0 0.0 0.0	10.7 0.0 0.0 2.1	67.1 0.0 0.0 0.0	49.0 0.0 0.0 0.0	2.4 0.0 0.0 0.0
Zn	sphalerite	ZnS; trace Ore mineral	Ore	59.5	0.0	0.0	0.0	0.0	0.0
As	arsenopyrite As-Oxide	FeAsS; trace Ore mineral Either As-flue species or domestic origin (As could be from ore, coal/coke or protective wood-coating wash)	Ore Smelter emission(?)	5.2 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0
Cu	tetrahedrite(?) chalcopyrite Cu-matte Cu-sulphate Cu-Oxide Cu-Metal brass	Cu-Sb-S; trace ore mineral Cu-Fe-S; essential ore mineral Cu2S: matte sulphide/chalcocite-phase Cu-S-O phase; Cu-refining phase CuO: Cu-refining phase CuO: Cu-refining phase Cu2S; domestic or miscellaneous	Ore Ore Smelter/matte Refining Refining Domestic/Other	0.0 5.8 2.7 0.0 0.0 0.0 0.0	0.0 0.0 23.3 0.0 0.0 0.0	0.0 0.0 9.9 6.6 1.4 3.7 3.6	0.0 1.7 0.0 0.0 1.5 0.0 0.0	0.0 0.0 14.4 11.7 0.0 0.0 7.1	0.0 0.9 34.9 5.5 11.3 0.0 0.0
Ni,Co	pentlandite millerite heazlewoodite Ni-Sulphate Ni-Sovide Ni-Co-Oxide Ni-Co-Oxide Ni-metal steel	Fe-Ni-Sulphide; major ore mineral NiS Ni3S2; nickel subsulphide Cu-S-O phase; Cu-refining phase NiO: Ni-refining phase Ni: Ni-refining phase Tramp metal/stainless steel(?)	Ore Ore Smelter/matte Refining Refining Refining Miscellaneous	2.7 2.0 5.6 0.0 7.0 0.0 0.0 3.7	0.0 0.0 26.3 2.3 17.6 0.0 27.1 0.0	0.0 0.0 21.8 14.8 17.9 0.0 7.7 0.0	27.1 0.0 2.6 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 17.9 0.0 0.0 0.0	0.0 5.5 21.7 3.6 14.2 0.0 0.0 0.0
Se	Se-metal(?)	Unknown; likely metallic refining residue	Refining(?)	0.0	0.0	0.0	0.0	0.0	0.0
			Total	100.0	100.0	100.0	100.0	100.0	100.0

Chemical Analysis

502 57824 | 504 57822 | 510 05-1291 | 512 57826 | 513 05-1292 | 515 57830 | LEACH ASSAYS

As Exchangeable	< 5	< 5	< 5	< 5	< 5	< 5
As Carbonate	< 5	< 5	< 5	< 5	< 5	< 5
As Reducible	5	< 5	36	6	21	5
As Organic	17	18	< 5	27	13	20
As Residual	< 5	< 5	< 5	< 5	< 5	< 5
Co Exchangeable	4.8	2.1	4.9	3.2	2.9	1.2
Co Carbonate	< 0.3	0.4	1.0	0.8	0.3	0.7
Co Reducible	12	5.4	23	21	11	11
Co Organic	20	20	3.3	70	10	30
Co Residual	16	6.3	9.7	17	6.4	18
Cu Exchangeable	30	43	130	130	390	59
Cu Carbonate	8.0	6.6	37	21	50	9.9
Cu Reducible	61	12	160	19	160	63
Cu Organic	300	890	150	2700	790	2000
Cu Residual	11	36	33	120	30	56
Ni Exchangeable	55	47	230	140	160	49
Ni Carbonate	14	5	49	24	11	11
Ni Reducible	75	60	480	320	69	200
Ni Organic	280	480	110	1600	190	910
Ni Residual	54	140	310	460	94	330
Pb Exchangeable	15	4.4	25	42	108	8.8
Pb Carbonate	31	10	32	630	130	5.3
Pb Reducible	42	38	150	1800	350	47
Pb Organic	26	100	5.9	1400	170	82
Pb Residual	2.4	7.0	1.8	63	9.5	8.2
Se Exchangeable	< 5	< 5	< 5	< 5	< 5	< 5
Se Carbonate	< 5	< 5	< 5	< 5	< 5	< 5
Se Reducible	7	< 5	< 5	< 5	8	< 5
Se Organic	< 5	< 5	< 5	9	< 5	< 5
Se Residual	< 5	< 5	< 5	< 5	< 5	< 5

< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
10	9	8	< 5	< 5	11	< 5	< 5	< 5	10
170	15	5	22	22	12	82	15	6	13
7	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
1.6	6.5	1.9	3.2	5.5	1.6	2.5	11	< 0.3	1.0
0.6	1.6	1.1	0.9	1.7	< 0.3	0.8	< 0.3	< 0.3	0.4
18	41	18	8.6	8.5	7.5	14	7.0	3.5	5.3
250	90	7.8	20	10	20	60	10	6.6	8.1
150	69	2.5	4.8	9.2	6.6	17	6.8	4.5	3.9
130	67	29	96	730	130	45	170	35	130
21	6.2	6.2	32	18	19	3.5	25	9.9	56
110	42	18	120	120	130	120	260	44	280
3300	820	420	1500	340	860	2500	420	380	1100
98	18	11	15	11	21	66	14	17	21
81	140	37	38	87	73	59	120	16	23
25	24	12	9	5	18	14	22	5	14
230	250	160	87	68	100	220	85	34	77
2700	570	220	280	190	450	780	260	140	160
520	210	66	56	70	100	110	50	90	57
10	40	2.4	10	73	46	7.7	25	9.8	126
71	8.7	9.2	35	57	290	1.5	25	6.5	400
140	49	74	380	48	200	120	42	28	440
540	41	14	330	32	84	200	15	24	150
26	2.2	1.0	9.4	< 0.7	3.9	9.0	1.8	2.0	6.7
< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
6	< 5	< 5	< 5	33	5	< 5	20	< 5	6
5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
< 5	< 5	< 5	< 5	< 5	< 5	< 5	Q	< 5	< 5

521 05-1294	522 05-1295	523 57797	525 57817	529 05-1297	533 05-1298	534 57834	541 05-1300	550 05-1301	552 05-1302

5	8	9	10	11	13	14	15	12	16
521 05-1294	522 05-1295	523 57797	525 57817	529 05-1297	533 05-1298	534 57834	541 05-1300	550 05-1301	552 05-1302
3.7 0.0 0.0 0.0	3.3 0.0 0.0 0.0	5.7 0.0 0.0 0.0	63.9 3.5 0.0 0.0	16.0 0.0 0.0 0.0	27.2 2.9 0.0 0.0	18.1 3.5 0.0 0.0	39.5 23.1 0.0 0.0	12.2 0.7 0.0 0.0	34.6 12.3 0.0 2.4
0.0 0.0 0.0	0.0 4.5 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 1.7 0.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 1.8	0.0 0.0 0.0	0.0 12.3 0.0
0.0 0.0 33.6 14.5 1.8 7.5 2.4	0.0 0.0 22.7 23.7 5.0 0.0 3.1	0.0 0.0 36.8 25.4 0.0 0.0 0.0	0.0 0.0 5.5 19.5 0.0 0.0	0.8 15.3 14.0 0.0 0.0 0.0 2.2	0.0 0.0 26.0 10.3 0.7 0.0 5.1	0.0 0.0 1.4 34.6 41.5 0.0	0.0 0.0 4.8 10.2 0.0 0.0 12.2	0.0 0.0 7.3 0.5 0.7 30.5 8.4	0.0 0.0 10.3 3.7 3.8 7.5
0.0 0.0 14.3 17.0 4.4 0.0 0.8 0.0 0.0	2.0 0.0 1.4 17.3 5.3 6.7 0.0 5.0 0.0	21.8 0.0 9.0 0.9 0.0 0.0 0.0 0.0 0.4 0.0	0.0 0.0 4.1 3.5 0.0 0.0 0.0 0.0	8.4 0.0 5.5 16.4 19.6 0.0 0.0 0.0 0.0	0.0 0.0 0.0 27.8 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0	0.0 0.0 2.0 0.0 0.0 0.0 3.6 2.8 0.0	0.0 0.0 37.1 0.1 2.4 0.0 0.0 0.0 0.0	0.5 0.0 0.0 0.0 0.0 0.0 10.3 2.4
100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0

17	18	19	20	21	22	24	23			
560 05-1303	572 05-1305	582 05-1307	584 05-1308	600 57810	601 05-1310	602 05-1311	606 05-1312	Average		
									COC	Mineral
13.9	11.0	25.2	28.9	6.7	19.0	44.9	0.9	21.4	Pb	anglesite
8.4	3.3	1.8	0.0	0.0	0.0	0.0	0.0	2.5		Pb-Sn
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		PD-CI Ph/To/So
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	_	FD/Te/Se
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.5	Zn	sphalerite
0.0	0.0	6.0	0.0	16.1	52.8	7.7	0.0	4.4	As	arsenopyrite
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1		As-Oxide
0.0	9.1	0.0	0.0	0.0	0.0	0.0	0.0	0.4	Cu	Tetrahedrite
0.0	0.0	0.0	3.4	0.0	0.0	15.7	18.2	2.5		chalcopyrite
0.0	2.4	2.4	0.3	0.0	0.0	1.0	20.0	10.0		Cu-matte
11.0	0.0	0.0	5.0	7.2	11.2	0.0	0.4	4.8		Cu-Oxide
0.0	0.0	0.0	0.0	0.4	0.3	0.3	0.0	3.7		Cu-Metal
5.3	6.6	0.0	0.0	19.0	2.7	3.1	0.0	3.7		brass
0.0	0.0	46.1	15.2	0.0	0.0	26	0.0	53	Ni Co	nentlandite
0.0	0.0	0.0	11.1	6.1	0.0	0.4	8.9	1.4	141,00	Millerite
0.0	0.0	18.5	0.0	3.1	0.0	13.6	16.4	8.3		heazlewoodite
0.0	0.0	0.0	15.5	10.2	0.0	0.0	0.0	4.3		Ni-Sulphate
0.0	2.2	0.0	6.9	26.0	8.8	2.4	4.5	7.9		Ni-oxide
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.3		Ni-Co-Oxide
0.0	51.3	0.0	0.0	0.0	0.0	1.8	0.0	3.8		Ni-metal
57.4	12.9	0.0	8.5	0.0	4.5	2.1	0.0	4.5		steel
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	Se	Se-metal(?)
100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0		Total
500 05 1000		500 05 1003	504 05 4000				000 05 1010			
560 05-1303	572 05-1305	582 05-1307	584 05-1308	600 57810	601 05-1310	602 05-1311	606 05-1312	Average		
< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5		As Exchangeable
< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	< 5 < 5	1	As Exchangeable As Carbonate
< 5 < 5 < 5	< 5 < 5 < 5	< 5 < 5 < 5	< 5 < 5 8	< 5 < 5 < 5	< 5 < 5 6	< 5 < 5 < 5	< 5 < 5 26	< 5 < 5 12		As Exchangeable As Carbonate As Reducible
< 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 10	< 5 < 5 < 5 8	< 5 < 5 8 39	< 5 < 5 < 5 14	< 5 < 5 6 26	< 5 < 5 < 5 6	< 5 < 5 26 130	< 5 < 5 12 31		As Exchangeable As Carbonate As Reducible As Organic
< 5 < 5 < 5 < 5 < 5 < 5	< 5 < 5 < 5 10 < 5	< 5 < 5 < 5 8 < 5	< 5 < 5 8 <mark>39</mark> < 5	< 5 < 5 < 5 14 < 5	< 5 < 5 6 26 < 5	< 5 < 5 < 5 6 < 5	< 5 < 5 26 130 9	< 5 < 5 12 31 < 8		As Exchangeable As Carbonate As Reducible As Organic As Residual
< 5 < 5 < 5 < 5 < 5 < 5 0.4	< 5 < 5 < 5 10 < 5 3.1	< 5 < 5 < 5 8 < 5 0.4	< 5 < 5 8 39 < 5 1.8	< 5 < 5 < 5 14 < 5 0.8	< 5 < 5 6 26 < 5 0.8	< 5 < 5 < 5 6 < 5 0.6	< 5 < 5 26 130 9 2.9	< 5 < 5 12 31 < 8 3		As Exchangeable As Carbonate As Reducible As Organic As Residual Co Exchangeable
<5 <5 <5 <5 <5 <5 0.4 <0.3	< 5 < 5 5 10 < 5 3.1 < 0.3	< 5 < 5 < 5 8 < 5 0.4 < 0.3	< 5 < 5 8 39 < 5 1.8 0.4	< 5 < 5 < 5 14 < 5 0.8 < 0.3	< 5 < 5 6 26 < 5 0.8 < 0.3	< 5 < 5 < 5 6 < 5 0.6 < 0.3	< 5 < 5 26 130 9 2.9 1.0	< 5 < 5 12 31 < 8 3 < 0.8		As Exchangeable As Carbonate As Reducible As Organic As Residual Co Exchangeable Co Carbonate
< 5 < 5 < 5 < 5 < 5 0.4 < 0.3 1.7	< 5 < 5 5 10 < 5 3.1 < 0.3 3.4	< 5 < 5 < 5 8 < 5 0.4 < 0.3 4.1	< 5 < 5 8 39 < 5 1.8 0.4 8.3	< 5 < 5 < 5 14 < 5 0.8 < 0.3 1.7	< 5 < 5 6 26 < 5 0.8 < 0.3 4.1	< 5 < 5 < 5 < 5 0.6 < 0.3 3.2	< 5 < 5 26 130 9 2.9 1.0 23	< 5 < 5 12 31 < 8 3 < 0.8 11		As Exchangeable As Carbonate As Reducible As Organic As Residual Co Exchangeable Co Carbonate Co Reducible
< 5 < 5 < 5 < 5 0.4 < 0.3 1.7 3.4	< 5 < 5 10 < 5 3.1 < 0.3 3.4 5.7	< 5 < 5 < 5 8 < 5 0.4 < 0.3 4.1 10	< 5 < 5 8 39 < 5 1.8 0.4 8.3 40	< 5 < 5 5 14 < 5 0.8 < 0.3 1.7 7.6	< 5 < 5 6 26 < 5 0.8 < 0.3 4.1 9.4	< 5 < 5 < 5 6 < 5 0.6 < 0.3 3.2 10	< 5 < 5 26 130 9 2.9 1.0 23 110 22	<5 <5 12 31 <8 3 <0.8 11 35 17		As Exchangeable As Carbonate As Reducible As Organic As Residual Co Exchangeable Co Carbonate Co Reducible Co Organic Co Parcial
< 5 < 5 < 5 < 5 < 5 0.4 < 0.3 1.7 3.4 4.9	< 5 < 5 < 5 3.1 < 0.3 3.4 5.7 2.8	<5 <5 8 0.4 <0.3 4.1 10 4.9	< 5 < 5 8 39 < 5 1.8 0.4 8.3 40 9.4	< 5 < 5 < 5 14 < 5 < 0.8 < 0.3 1.7 7.6 3.0	< 5 < 5 6 26 < 5 0.8 < 0.3 4.1 9.4 2.6	<5 <5 <5 6 <5 <0.6 <0.3 3.2 10 3.4	< 5 < 5 26 130 9 2.9 1.0 23 110 22	< 5 < 5 12 31 < 8 3 < 0.8 11 35 17		As Exchangeable As Carbonate As Reducible As Organic As Residual Co Exchangeable Co Carbonate Co Reducible Co Organic Co Residual
< 5 < 5 < 5 < 5 0.4 < 0.3 1.7 3.4 4.9 64	<5 <5 5 10 <5 3.1 <0.3 3.4 5.7 2.8 94 94	< 5 < 5 < 5 8 < 5 0.4 < 0.3 4.1 10 4.9 11	< 5 < 5 8 39 < 5 1.8 0.4 8.3 40 9.4 43 40	< 5 < 5 < 5 14 < 5 0.8 < 0.3 1.7 7.6 3.0 32 32	< 5 < 5 6 26 < 5 0.8 < 0.3 4.1 9.4 2.6 44	< 5 < 5 < 5 6 < 5 0.6 < 0.3 3.2 10 3.4 51	< 5 < 5 26 130 9 2.9 1.0 23 110 22 99 99	< 5 < 5 12 31 < 8 3 < 0.8 11 35 17 116		As Exchangeable As Carbonate As Reducible As Organic As Residual Co Exchangeable Co Carbonate Co Reducible Co Organic Co Residual Cu Exchangeable
<5 <5 <5 <5 <5 0.4 <0.3 1.7 3.4 4.9 64 4.4	<5 <5 <5 10 <5 3.1 <0.3 3.4 5.7 2.8 94 8.6 6	< 5 < 5 8 < 5 0.4 < 0.3 4.1 10 4.9 11 2.1 11	< 5 < 5 8 39 < 5 1.8 0.4 8.3 40 9.4 43 10	< 5 < 5 < 5 14 < 5 0.8 < 0.3 1.7 7.6 3.0 32 6.7 12	< 5 < 5 6 26 < 5 0.8 < 0.3 4.1 9.4 2.6 44 5.3 21	< 5 < 5 < 5 6 < 5 0.6 < 0.3 3.2 10 3.4 51 6.6 41	< 5 < 5 26 130 9 2.9 1.0 23 110 23 110 22 99 21 40	< 5 < 5 12 31 < 8 < 0.8 11 35 17 116 16 90		As Exchangeable As Carbonate As Reducible As Organic As Residual Co Exchangeable Co Carbonate Co Reducible Co Organic Co Residual Cu Exchangeable Cu Carbonate Cu Badrinble
<5 <5 <5 <5 0.4 <0.3 1.7 3.4 4.9 64 4.4 17 530	< 5 < 5 < 5 10 < 5 3.1 < 0.3 3.4 5.7 2.8 94 8.6 66 66	< 5 < 5 8 < 5 0.4 < 0.3 4.1 10 4.9 11 2.1 11 11 160	< 5 < 5 8 39 < 5 1.8 0.4 8.3 40 9.4 43 10 14 1300	< 5 < 5 14 < 5 0.8 < 0.3 1.7 7.6 3.0 32 6.7 12 390	< 5 6 26 < 5 0.8 < 0.3 4.1 9.4 2.6 44 5.3 21 440	< 5 < 5 5 6 < 5 0.6 < 0.3 3.2 10 3.4 51 6.6 11 810	< 5 26 130 9 2.9 1.0 23 110 22 99 21 40 5070	< 5 < 5 12 31 < 8 3 < 0.8 11 35 17 116 16 80 80 1140		As Exchangeable As Carbonate As Reducible As Organic As Residual Co Exchangeable Co Carbonate Co Reducible Co Organic Co Residual Cu Exchangeable Cu Carbonate Cu Reducible
<5 <5 <5 <5 <5 0.4 <0.3 1.7 3.4 4.9 64 4.4 17 530 8.7	< 5 < 5 < 5 10 < 5 3.1 < 0.3 3.4 5.7 2.8 94 8.6 66 66 190 5.4	<5 <5 8 <5 0.4 <0.3 4.1 10 4.9 11 2.1 11 11 160 5.3	< 5 < 5 8 39 < 5 1.8 0.4 8.3 40 9.4 43 10 14 1300 51	< 5 < 5 5 14 < 5 0.8 < 0.3 1.7 7.6 3.0 32 6.7 12 390 11	< 5 < 5 6 26 < 5 0.8 < 0.3 4.1 9.4 2.6 44 5.3 21 440 8.6	< 5 < 5 < 5 6 < 5 0.6 < 0.3 3.2 10 3.4 51 6.6 11 810 18	< 5 < 5 26 130 9 2.9 1.0 23 110 22 99 21 40 5070 380	< 5 < 5 12 31 < 8 3 < 0.8 11 35 17 116 16 80 1140 44		As Exchangeable As Carbonate As Reducible As Organic As Residual Co Exchangeable Co Aeducible Co Organic Cu Exchangeable Cu Carbonate Cu Reducible Cu Reducible Cu Reducible Cu Reducible Cu Reducible
<5 <5 <5 <5 <5 0.4 <0.3 1.7 3.4 4.9 64 4.4 17 530 8.7	< 5 < 5 < 5 3.1 < 0.3 3.4 5.7 2.8 94 8.6 66 190 5.4	<5 <5 8 <5 0.4 <0.3 4.1 10 4.9 11 2.1 11 160 5.3 8	< 5 8 39 < 5 1.8 0.4 8.3 40 9.4 43 10 14 1300 51 63	< 5 < 5 5 14 < 5 < 0.3 1.7 7.6 3.0 32 6.7 12 390 11 23	< 5 6 26 < 5 0.8 < 0.3 4.1 9.4 2.6 44 5.3 21 440 8.6	< 5 < 5 5 6 < 5 0.6 < 0.3 3.2 10 3.4 51 6.6 11 810 18 26	< 5 < 5 26 130 9 2.9 1.0 23 110 22 99 21 40 5070 380 380	< 5 < 5 12 31 < 8 3 < 0.8 11 35 17 116 16 80 1140 44 69		As Exchangeable As Carbonate As Reducible As Reducible Co Exchangeable Co Carbonate Co Reducible Co Organic Co Residual Cu Exchangeable Cu Reducible Cu Reducible Cu Reducible Cu Reducible
<5 <5 <5 <5 <5 0.4 <0.3 1.7 3.4 4.9 64 4.4 17 530 8.7 2 <1	< 5 < 5 < 5 10 < 5 3.1 < 0.3 3.4 5.7 2.8 94 8.6 66 190 5.4 16 5	< 5 < 5 8 < 5 0.4 < 0.3 4.1 10 4.9 11 2.1 11 160 5.3 8 2	< 5 < 5 8 39 < 5 1.8 0.4 8.3 40 9.4 43 10 14 1300 51 63 7	< 5 < 5 5 14 < 5 0.8 < 0.3 1.7 7.6 3.0 32 6.7 12 390 11 23 3	< 5 < 5 6 26 < 5 0.8 < 0.3 4.1 9.4 2.6 44 5.3 21 440 8.6 16 3	< 5 < 5 5 6 < 5 0.6 < 0.3 3.2 10 3.4 51 6.6 11 810 18 36 5	< 5 < 5 26 130 9 2.9 1.0 23 110 22 99 21 40 5070 380 130 72	< 5 < 5 12 31 < 8 < 0.8 11 35 17 116 16 80 1140 44 69 16		As Exchangeable As Carbonate As Reducible As Organic As Residual Co Exchangeable Co Carbonate Co Residual Cu Exchangeable Cu Residual Cu Exchangeable Cu Residual Ni Exchangeable Ni Carbonate
<5 <5 <5 <5 0.4 <0.3 1.7 3.4 4.9 64 4.4 17 530 8.7 12 <1 18	< 5 < 5 < 5 10 < 5 3.1 < 0.3 3.4 5.7 2.8 94 8.6 66 66 190 5.4 16 5 23	< 5 < 5 8 < 5 0.4 < 0.3 4.1 10 4.9 11 2.1 11 2.1 11 160 5.3 8 2 22	< 5 8 39 < 5 1.8 0.4 8.3 40 9.4 43 10 14 1300 51 63 7 94	< 5 < 5 < 5 14 < 5 0.8 < 0.3 1.7 7.6 3.0 32 6.7 12 390 11 23 3 28	< 5 < 5 6 26 < 5 0.8 < 0.3 4.1 9.4 2.6 44 5.3 21 440 8.6 16 3 46	< 5 < 5 6 < 5 0.6 < 5 0.6 < 0.3 3.2 10 3.4 51 6.6 11 810 18 36 5 63	< 5 < 5 26 130 9 2.9 1.0 23 110 22 99 21 40 5070 380 130 72 490	< 5 < 5 12 31 < 8 3 < 0.8 11 35 17 116 16 80 1140 44 69 16 137	1	As Exchangeable As Carbonate As Reducible As Reganic As Residual Co Exchangeable Co Carbonate Co Reducible Co Arsonate Cu Exchangeable Cu Carbonate Cu Carbonate Cu Residual Ni Exchangeable Ni Carbonate Ni Reducible
<5 <5 <5 <5 <5 0.4 <0.3 1.7 3.4 4.9 64 4.4 17 530 8.7 12 <1 18 68	< 5 < 5 < 5 10 < 5 3.1 < 0.3 3.4 5.7 2.8 94 8.6 66 190 5.4 16 5 23 62	<5 <5 8 <5 0.4 <0.3 4.1 10 4.9 11 2.1 11 11 160 5.3 8 2 2 22 79	< 5 8 39 < 5 1.8 0.4 8.3 40 9.4 43 10 14 13000 51 63 7 94 750	< 5 < 5 < 5 14 < 5 0.8 < 0.3 1.7 7.6 3.0 32 6.7 12 390 11 23 3 28 130	< 5 6 26 26 3 4.1 9.4 2.6 44 5.3 21 440 8.6 16 3 46 190	< 5 < 5 5 6 < 5 0.6 < 0.3 3.2 10 3.4 5 1 6.6 11 810 18 36 5 63 370	< 5 26 130 9 2.9 1.0 23 110 22 99 21 40 5070 380 130 72 490 3800	< 5 < 5 12 31 < 8 3 < 0.8 11 35 17 116 16 80 1140 44 69 16 137 615		As Exchangeable As Carbonate As Reducible As Organic As Residual Co Exchangeable Co Carbonate Co Reducible Co Organic Cu Exchangeable Cu Carbonate Cu Carbonate Cu Residual Ni Exchangeable Ni Reducible Ni Reducible
<5 <5 <5 <5 <5 0.4 <0.3 1.7 3.4 4.9 64 4.4 17 530 8.7 12 <1 18 68 87	< 5 < 5 < 5 3.1 < 0.3 3.4 5.7 2.8 94 8.6 66 190 5.4 16 5 23 62 22	<5 <5 5 8 <5 0.4 <0.3 4.1 10 4.9 11 2.1 11 160 5.3 8 22 22 79 28	< 5 8 39 < 5 1.8 0.4 8.3 40 9.4 43 10 14 1300 51 63 7 94 750 190	< 5 < 5 < 5 14 < 5 < 0.3 1.7 7.6 3.0 32 6.7 12 390 11 23 3 28 130 54	< 5 6 26 < 5 0.8 < 0.3 4.1 9.4 2.6 44 5.3 21 440 8.6 16 3 46 190 29	< 5 < 5 5 6 < 5 6 < 0.0 3.2 10 3.2 10 3.4 51 6.6 11 810 18 36 5 63 370 96	< 5 < 5 26 130 9 2.9 1.0 23 110 22 99 21 40 5070 380 130 72 490 3800 620	< 5 < 5 12 31 < 8 3 < 0.8 11 35 17 116 16 16 140 44 49 16 137 615 160		As Exchangeable As Carbonate As Reducible As Reducible Co Exchangeable Co Carbonate Co Reducible Co Organic Co Residual Cu Exchangeable Cu Reducible Cu Reducible Ni Exchangeable Ni Exchangeable Ni Carbonate Ni Residual
<5 <5 <5 <5 <5 0.4 <0.3 1.7 3.4 4.9 64 4.4 17 530 8.7 12 <1 18 68 87 21	< 5 < 5 < 5 10 < 5 3.1 < 0.3 3.4 5.7 2.8 94 8.6 66 190 5.4 16 5 23 62 22 22 49	< 5 < 5 < 5 8 < 5 0.4 < 0.3 4.1 10 4.9 11 2.1 11 160 5.3 8 2 22 79 28 29	< 5 8 39 < 5 1.8 0.4 8.3 40 9.4 43 10 14 1300 51 63 7 94 750 190 8.2	<pre>< 5 < 5 < 5 14 < 5 0.8 < 0.3 1.7 7.6 3.0 32 6.7 12 390 11 23 3 28 130 54 16</pre>	< 5 6 26 < 5 0.8 < 0.3 4.1 9.4 2.6 44 5.3 21 440 8.6 16 3 46 190 29 11	< 5 < 5 6 < 5 0.6 < 0.3 3.2 10 3.2 10 3.2 51 6.6 11 810 18 36 5 63 370 96 5.0	< 5 < 5 26 130 9 2.9 1.0 23 110 22 99 21 40 5070 380 130 72 490 3800 620 13	< 5 < 5 12 31 < 8 < 0.8 11 35 17 116 16 80 1140 44 69 16 137 615 160 28		As Exchangeable As Carbonate As Reducible As Regidual Co Exchangeable Co Carbonate Co Reducible Co Carbonate Co Residual Cu Exchangeable Cu Organic Cu Reducible Cu Reducible Cu Reducible Ni Exchangeable Ni Reducible Ni Reducible Ni Reducible Ni Reducible Ni Reducible Ni Reducible Ni Residual Ni Residual
	< 5 < 5 < 5 10 < 5 3.1 < 0.3 3.4 5.7 2.8 94 8.6 66 190 5.4 16 5 23 62 22 22 49 10	< 5 < 5 8 < 5 0.4 < 0.3 4.1 10 4.9 11 2.1 11 2.1 11 2.1 3 8 2 2 2 79 28 2.9 1.6	< 5 8 39 < 5 1.8 0.4 8.3 40 9.4 43 10 14 1300 51 63 7 94 750 190 8.2 44	<pre>< 5 < 5 < 5 14 < 5 0.8 < 0.3 1.7 7.6 3.0 32 6.7 12 390 11 23 39 11 23 3 8 130 54 16 3.1</pre>	< 5 < 5 6 26 < 5 0.8 < 0.3 4.1 9.4 2.6 44 5.3 21 440 8.6 16 3 46 190 29 29 11 8.3	< 5 < 5 6 < 5 0.6 < 5 0.6 < 0.3 3.2 10 3.4 51 6.6 11 810 18 36 5 63 370 96 5.0 25	< 5 < 5 26 130 9 2.9 1.0 23 110 22 99 21 40 5070 380 130 72 490 3800 620 13 20	< 5 < 5 12 31 < 8 3 < 0.8 11 35 17 116 16 80 1140 44 69 16 137 615 160 28 78		As Exchangeable As Carbonate As Reducible As Residual Co Exchangeable Co Carbonate Co Reducible Co Arbonate Cu Reducible Cu Carbonate Cu Reducible Cu Organic Cu Residual Ni Exchangeable Ni Reducible Ni Reducible
<5 <5 <5 <5 <5 0.4 <0.3 1.7 3.4 4.9 64 4.4 17 530 8.7 12 <1 18 68 87 21 6.5 28	<pre>< 5 < 5 < 5 < 5 10 < 5 3.1 < 0.3 3.4 5.7 2.8 94 8.6 66 190 5.4 16 5 23 62 22 49 10 25 </pre>	<5 <5 <5 8 <5 0.4 <0.3 4.1 10 4.9 11 2.1 11 11 160 5.3 8 2 22 22 79 28 29 1.6 16	< 5 8 39 < 5 1.8 0.4 8.3 40 9.4 43 10 14 1300 51 63 7 94 750 190 8.2 44 200	< 5 < 5 < 5 14 < 5 < 0.3 1.7 7.6 3.0 32 6.7 12 390 11 23 3 90 11 23 3 28 130 54 16 3.1 31	<pre>< 5 < 5 6 26 26 < 5 0.8 < 0.3 4.1 9.4 2.6 44 5.3 21 440 8.6 16 3 46 16 3 46 190 29 11 8.3 65</pre>	< 5 < 5 < 5 6 < 5 0.6 < 0.3 3.2 10 3.4 51 6.6 11 810 18 36 5 63 370 96 5.0 25 67	< 5 < 5 26 130 9 2.9 1.0 23 110 22 99 21 40 5070 380 5070 380 620 13 20 97	< 5 < 5 12 31 < 8 3 < 0.8 11 35 17 116 16 80 1140 44 69 16 137 615 160 28 78 187		As Exchangeable As Carbonate As Reducible As Reducible Co Exchangeable Co Carbonate Co Residual Cu Exchangeable Cu Reducible Cu Organic Cu Reducible Cu Organic Cu Reducible Ni Exchangeable Ni Carbonate Ni Reducible Ni Bachangeable Ni Bachangeable Pb Carbonate
< 5 < 5 < 5 < 5 < 5 0.4 < 0.3 1.7 3.4 4.9 64 4.4 4.9 64 4.4 17 530 8.7 12 < 1 18 68 87 21 6.5 28 23	<pre>< 5 < 5 < 5 < 5 < 5 < 0.3 .1 < 0.3 3.4 5.7 2.8 94 8.6 66 190 5.4 16 5 23 62 22 49 10 25 23</pre>	<5 <5 <5 8 <5 0.4 <0.3 4.1 10 4.9 11 2.1 11 160 5.3 8 222 79 28 2.9 1.6 16 18	< 5 8 39 < 5 1.8 0.4 8.3 40 9.4 43 10 14 1300 51 63 7 94 750 190 8.2 44 200 250	< 5 < 5 < 5 14 < 5 < 0.3 1.7 7.6 3.0 32 6.7 12 390 11 23 32 8 130 54 16 3.1 31 19	< 5 6 26 < 5 0.8 < 0.3 4.1 9.4 2.6 44 5.3 21 440 8.6 16 3 46 190 29 11 8.3 65 55	< 5 < 5 < 5 6 < 5 6 < 0.6 < 0.3 3.2 10 3.4 51 6.6 11 810 18 36 5 63 370 96 5.0 25 67 69	< 5 < 5 26 130 9 2.9 1.0 23 110 22 99 21 40 5070 380 130 72 490 3800 620 13 20 97 110	< 5 < 5 12 31 < 8 3 < 0.8 11 35 17 116 16 16 137 615 160 28 78 187 158		As Exchangeable As Carbonate As Reducible As Reducible Co Exchangeable Co Carbonate Co Reducible Co Organic Co Residual Cu Exchangeable Cu Aeducible Cu Carbonate Cu Reducible Ni Exchangeable Ni Carbonate Ni Reducible Ni Reducible Ni Reducible Ni Reducible Ni Reducible Ni Reducible Pb Exchangeable Pb Reducible
<5 <5 <5 <5 <5 0.4 <0.3 1.7 3.4 4.9 64 4.4 4.4 17 530 8.7 12 <1 18 68 87 21 6.5 28 23 1.5	<pre>< 5 < 5 < 5 10 < 5 3.1 < 0.3 3.4 5.7 2.8 94 8.6 66 190 5.4 16 5 23 62 22 49 10 25 23 3.0</pre>	< 5 < 5 < 5 8 < 5 0.4 < 0.3 4.1 10 4.9 11 2.1 11 2.1 11 2.1 11 160 5.3 8 2 22 79 28 29 1.6 16 16 16 18 11	< 5 < 5 8 39 < 5 1.8 0.4 8.3 40 9.4 43 10 14 1300 51 63 7 94 750 190 8.2 44 200 250 12	<pre>< 5 < 5 < 5 14 < 5 0.8 < 0.3 1.7 7.6 3.0 32 6.7 12 390 11 23 30 11 23 3 28 130 54 16 3.1 31 31 31 19 2.9</pre>	<pre>< 5 < 5 < 6 26 < 5 0.8 < 0.3 4.1 9.4 2.6 44 5.3 21 440 8.6 16 3 46 190 29 11 8.3 65 55 3.2</pre>	< 5 < 5 6 < 5 6 < 5 0.6 < 0.3 3.2 10 3.2 10 51 6.6 11 810 18 36 5 63 370 96 5.0 25 67 69 2.3	<pre>< 5 < 5 < 6 130 9 2.9 1.0 23 110 23 110 22 99 21 40 5070 380 130 72 490 3800 620 13 20 97 13 20 97 110 9.9</pre>	< 5 < 5 12 31 < 8 < 0.8 11 35 17 116 16 80 1140 44 69 16 137 615 160 28 78 187 158 9		As Exchangeable As Carbonate As Reducible As Reducible Co Exchangeable Co Carbonate Co Residual Cu Exchangeable Cu Reducible Cu Arganic Cu Residual Ni Exchangeable Ni Carbonate Ni Carbonate Ni Carbonate Ni Reducible Ni Reducible Ni Residual Pb Exchangeable Pb Crganic Pb Reducible Pb Crganic Pb Residual
	<pre>< 5 < 5 < 5 < 5 10 < 5 3.1 < 0.3 3.4 5.7 2.8 94 8.6 66 190 5 4 16 5 23 62 22 49 10 25 23 3.0 < 5 </pre>	<5 <5 8 <5 8 <5 0.4 <0.3 4.1 10 4.9 11 2.1 11 11 160 5.3 8 2 22 79 28 2.9 1.6 16 18 11 <5	< 5 8 39 < 5 1.8 0.4 8.3 40 9.4 43 10 14 13000 51 63 7 94 750 190 8.2 44 200 250 12 < 5	< 5 < 5 < 5 14 < 5 < 0.3 1.7 7.6 3.0 32 6.7 12 390 11 23 390 11 23 3 28 130 54 16 3.1 31 99 54 5 5	< 5 6 26 26 26 26 26 2.6 2.6 2.6	<pre>< 5 < 5 < 5 < 6 < 5 < 6 < 5 </pre> 0.6 < 0.3 3.2 10 3.4 51 6.6 11 810 18 36 5 63 370 96 5.0 25 67 69 2.3	< 5 < 5 26 130 9 2.9 1.0 23 110 22 99 21 40 5070 380 130 72 490 3800 620 13 20 97 110 97 40 50 620 50 50 620 50 620 50 620 50 620 50 620 50 620 50 620 50 620 50 50 50 50 50 50 50 50 50 5	< 5 < 5 12 31 < 8 3 < 0.8 11 35 17 116 16 80 1140 44 69 16 137 615 160 28 78 187 158 9 9 < 5		As Exchangeable As Carbonate As Reducible As Organic As Residual Co Exchangeable Co Carbonate Co Reducible Co Carbonate Cu Carbonate Cu Carbonate Cu Carbonate Cu Organic Cu Aresidual Ni Exchangeable Ni Carbonate Ni Reducible Ni Carbonate Ni Reducible Ni Reducible Ni Residual Pb Exchangeable Pb Carbonate Pb Reducible Pb Residual Se Exchangeable
	<pre>< 5 < 5 < 5 < 5 10 < 5 3.1 < 0.3 3.4 5.7 2.8 94 8.6 66 190 5.4 16 5 23 62 22 49 10 25 23 3.0 </pre>	<pre><5 <5 <5 < .5 8 < .5 .0.4 <0.3 4.1 10 4.9 11 2.1 11 160 5.3 8 2 22 79 28 2.9 1.6 18 11 </pre>	<pre>< 5 < 5 8 39 < 5 1.8 0.4 8.3 40 9.4 43 10 14 1300 51 63 7 94 750 190 8.2 44 200 250 12 </pre>	<pre>< 5 < 5 < 5 < 5 < 4 < 5 < 5 </pre> 14 < 5 0.8 < 0.3 <pre>1.7 </pre> 7.6 <pre>32 6.7 <pre>12 </pre> 390 11 <pre>23 <pre>32 </pre> 16 <pre>3.1 <pre>31 </pre> 16 <pre>3.1 <pre>31 </pre> 19 <pre>2.9 </pre> </pre> </pre></pre></pre>	<pre>< 5 < 5 6 26 < 5 </pre> <pre>< 6 </pre> <pre>< 26 </pre> <pre>< 0.3 4.1 9.4 2.6 </pre> <pre>44 5.3 21 440 8.6 </pre> <pre>44 6 3 46 190 29 11 8.3 65 55 3.2 </pre> <pre>< 5 </pre>	<pre>< 5 < 5 < 5 < 6 < 5 < 6 < 0.3 3.2 10 3.4 51 6.6 11 810 18 36 5 63 370 96 5.0 25 69 2.3 </pre>	<pre>< 5 < 5 26 130 9 2.9 1.0 23 110 22 99 21 40 5070 380 130 72 490 3800 620 13 20 13 20 72 110 9.9 </pre>	< 5 < 5 12 31 < 8 3 < 0.8 11 35 17 116 16 80 1140 44 469 16 137 615 160 28 78 78 78 78 78 78 78 75 9 < 5 < 5 < 5		As Exchangeable As Carbonate As Reducible As Reducible Co Exchangeable Co Carbonate Co Reducible Co Organic Co Residual Cu Exchangeable Cu Reducible Cu Reducible Ni Exchangeable Ni Carbonate Ni Residual Pb Exchangeable Pb Reducible Pb Reducible Pb Reducible Pb Reducible Pb Residual Se Exchangeable Se Exchangeable Se Exchangeable
	<pre>< 5 < 5 < 5 < 5 < 5 < 0 </pre> <pre>3.1 < 0.3 </pre> <pre>3.4 </pre> <pre>5.7 </pre> <pre>2.8 </pre> 94 <pre>8.6 </pre> 66 190 5.4 16 5 23 62 22 49 10 25 23 3.0 < 5 < 6	<pre><5 <5 <5 </pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre>< 5 < 5 8 39 < 5 1.8 0.4 8.3 40 9.4 43 10 14 1300 51 63 7 94 750 190 8.2 44 200 250 12 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	<pre>< 5 < 5 < 5 14 < 5 0.8 < 0.3 1.7 7.6 3.0 32 6.7 12 390 11 23 3 28 130 54 16 3.1 31 19 2.9 < 5 < 5</pre>	<pre>< 5 < 5 6 26 < 5 0.8 < 0.3 4.1 9.4 2.6 44 5.3 21 440 8.6 16 3 46 190 29 11 8.3 65 55 3.2 < 5 < 5 < 5 < 5 </pre>	<pre>< 5 < 5 < 5 6 < 5 0.6 < 0.3 3.2 10 3.4 51 6.6 11 810 18 36 5 63 370 96 5.0 25 67 69 2.3 < 5 < 5</pre>	<pre>< 5 < 5 26 130 9 2.9 1.0 23 110 22 99 21 40 5070 380 130 72 490 3800 620 13 20 97 110 9.9 < 5 </pre>	<pre>< 5 < 5 < 5 < 5 12 31 < 8 3 < 0.8 11 35 17 116 16 16 16 16 137 615 160 28 78 187 158 9 < 5 < 5 < 6</pre>		As Exchangeable As Carbonate As Reducible As Reducible As Residual Co Exchangeable Co Carbonate Co Reducible Co Residual Cu Exchangeable Cu Carbonate Cu Residual Ni Exchangeable Ni Carbonate Ni Reducible Ni Carbonate Ni Reducible Pb Exchangeable Pb Residual Pb Exchangeable Pb Residual Se Exchangeable Se Reducible
	<pre>< 5 < 5 < 5 < 5 10 < 5 3.1 < 0.3 3.4 5.7 2.8 94 8.6 66 190 5.4 16 5 23 62 22 49 10 25 23 62 22 49 10 25 23 3.0 < 5 < 5 6</pre>	<pre><5 <5 <5 8 <5 0.4 <0.3 4.1 10 4.9 11 2.1 11 160 5.3 8 2 22 79 28 2.9 1.6 16 18 11 <<5 <5 <5 <5 <5 <5 </pre>	<pre>< 5 < 5 < 5 < 5 < 8 39 < 5 1.8 0.4 8.3 40 9.4 43 10 14 1300 51 63 7 94 750 190 8.2 44 200 250 12 < 5 < 5 < 5 8</pre>	<pre>< 5 < 5 < 5 < 4 </pre> <pre></pre>	<pre>< 5 < 5 < 6 26 <26 <5 0.8 <0.3 4.1 9.4 2.6 44 5.3 21 440 8.6 16 3 46 190 29 11 8.3 65 55 3.2 < 5 < 5</pre>	<pre>< 5 < 5 < 5 6 < 5 0.6 < 0.3 3.2 10 3.4 51 6.6 11 810 18 36 5 5 63 370 96 5.0 25 67 69 2.3 < 5 < 5</pre>	<pre>< 5 < 5 26 130 9 2.9 1.0 23 110 23 110 23 21 40 5070 380 130 130 72 490 3800 620 13 3800 620 13 13 20 97 110 9.9 </pre>	<pre>< 5 < 5 < 5 12 31 < 8 3 < 0.8 11 35 17 116 16 16 80 1140 44 69 16 137 615 160 28 78 187 158 9 << 5 < 5 < 6 < 7 </pre>		As Exchangeable As Carbonate As Reducible As Reducible Co Exchangeable Co Carbonate Co Reducible Co Carbonate Co Residual Cu Exchangeable Cu Carbonate Cu Carbonate Cu Residual Ni Exchangeable Ni Carbonate Ni Reducible Ni Residual Pb Exchangeable Pb Carbonate Pb Residual Se Exchangeable Pb Carbonate Pb Residual

APPENDIX 2: Air Filter Results

	1		Likely					
COC	Compound	Possible derivation	Mineral/Species	2004040724	2004040725	2004031715	2004031716	2004040810
				1	2	3	4	5
Pb	Pb,S,O	Emissions	Anglesite	24.6	2.3	54.2	14.2	4.8
	Pb,S	Ore	Galena	0.0	0.0	0.0	0.0	0.0
	Pb, Sn	Ore/PGM-Residue	Pb-Alloy(?)	0.0	0.0	0.0	0.0	0.0
	Pb,Pd	Ore/PGM-Residue	Pb-Pd-Alloy(?)	0.0	0.0	0.0	0.0	0.0
Cu	Cu,Fe,S	Ore	Chalcopyrite	9.1	32.2	7.6	10.8	15.8
	Cu,S	Matte	Cu-Matte	18.8	2.9	0.0	8.5	20.3
	Cu,S,O	Refining	Cu-Sulphate	0.0	0.0	0.0	0.3	30.7
	Cu,O	Refining	Cu-Oxide	0.0	0.0	3.2	0.5	1.0
	Cu	Refining	Cu-Metal	0.0	0.0	0.0	2.6	0.0
	Cu,Sb,O	Refining	Cu-Sb-Oxide	0.0	0.0	0.0	0.0	0.0
	Cu,Zn	Domestic/refining	Brass	0.0	0.0	0.0	0.0	0.0
	Ag,Sb,Cu,S	Ore/PGM-Residue	Argentotennantite(?)	0.0	0.0	0.0	0.0	0.0
	Ag,Cu	Ore/PGM-Residue	Ag-Cu-Alloy	0.0	0.0	0.0	0.0	0.0
Ni	Ni Fe S	Ore	Pentlandite	23.0	23.3	21.1	23.2	18.4
	Co Ni Fe S	Ore	Co-Pentlandite	17	0.0	0.0	0.0	0.0
	Ni~S	Ore	Millerite	0.0	1.0	0.0	3.9	0.2
	Fe.S>Ni	Ore	Pvrrhotite	0.0	0.0	0.0	0.0	0.0
	Ni,As,S	Ore	Ni-Arsenide	1.1	0.0	0.0	0.0	0.0
	Ni,O	Refining	Ni-Oxide	0.0	25.1	11.2	2.6	8.6
	Fe,Mn,Ni,O	Refining	Fe/Mn/Ni-Oxide	7.3	0.0	0.0	0.0	0.0
	Ni,Co,O	Refining	Ni-Co-Oxide	3.7	0.0	0.0	0.0	0.0
	Ni3S2	Matte	Ni-Matte	8.3	0.7	0.0	0.0	0.0
	Ni,S,O	Refining	Ni-Suphate	2.5	2.0	2.7	0.8	0.1
	Ni,Co,S,O	Refining	Ni/Co-sulphate	0.0	0.0	0.0	4.7	0.0
	Ni< <fe,mg,si< th=""><th>Matte/Smelting</th><th>Ni-Slag</th><th>0.0</th><th>0.0</th><th>0.0</th><th>6.2</th><th>0.0</th></fe,mg,si<>	Matte/Smelting	Ni-Slag	0.0	0.0	0.0	6.2	0.0
	Fe,Cr,Ni	Miscellaneous	Steel	0.0	10.4	0.0	0.0	0.0
Zn	Zn,O	Refining?	Zn-Oxide	0.0	0.0	0.0	6.6	0.0
	Zn,S,O	Refining?	Zn-Sulphate	0.0	0.0	0.0	14.6	0.0
		_						
	Zn,Cl	Refining?	Zn-Chloride	0.0	0.0	0.0	0.5	0.0
	Zn,Cl Zn>Fe, S	Refining? Ore	Zn-Chloride Sphalerite	0.0 0.0	0.0 0.0	0.0 0.0	0.5 0.0	0.0 0.1
	Zn,Cl Zn>Fe, S	Refining? Ore	Zn-Chloride Sphalerite Totals	0.0 0.0 100	0.0 0.0 100	0.0 0.0 100	0.5 0.0 100	0.0 0.1 100
	Zn,Cl Zn>Fe, S	Refining? Ore	Zn-Chloride Sphalerite Totals	0.0 0.0 100	0.0 0.0 100	0.0 0.0 100	0.5 0.0 100	0.0 0.1 100
	Zn,CÎ Zn>Fe, S	Refining? Ore Chemical Analysis	Zn-Chloride Sphalerite Totals	0.0 0.0 100 2004040724	0.0 0.0 100 2004040725	0.0 0.0 100 2004031715	0.5 0.0 100 2004031716	0.0 0.1 100 2004040810
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis	Zn-Chloride Sphalerite Totals	0.0 0.0 100 2004040724	0.0 0.0 100 2004040725 0.32	0.0 0.0 100 2004031715 0.43	0.5 0.0 100 2004031716 0.32	0.0 0.1 100 2004040810
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate	Zn-Chloride Sphalerite Totals	0.0 0.0 100 2004040724 0.41 0.05	0.0 0.0 100 2004040725 0.32 0.06	0.0 0.0 100 2004031715 0.43 0.05	0.5 0.0 100 2004031716 0.32 0.05	0.0 0.1 100 2004040810 0.32 0.09
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Reducible	Zn-Chloride Sphalerite Totals Hg Hg	0.0 0.0 100 2004040724 0.41 0.05 0.06	0.0 0.0 100 2004040725 0.32 0.06 < 0.02	0.0 0.0 100 2004031715 0.43 0.05 0.04	0.5 0.0 100 2004031716 0.32 0.05 0.02	0.0 0.1 100 2004040810 0.32 0.09 0.06
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Organic	Zn-Chloride Sphalerite Totals µg µg µg	0.0 0.0 100 2004040724 0.41 0.05 0.06 0.37	0.0 0.0 100 2004040725 0.32 0.06 < 0.02 0.09	0.0 0.0 100 2004031715 0.43 0.05 0.04 0.16	0.5 0.0 100 2004031716 0.32 0.05 0.02 0.06	0.0 0.1 100 2004040810 0.32 0.09 0.06 0.45
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Reducible Co Organic Co Organic	Zn-Chloride Sphalerite Totals Hg Hg Hg Hg	0.0 0.0 100 2004040724 0.41 0.05 0.06 0.37 0.11	0.0 0.0 100 2004040725 0.32 0.06 < 0.02 0.09 < 0.02	0.0 0.0 100 2004031715 0.43 0.05 0.04 0.16 0.04	0.5 0.0 100 2004031716 0.32 0.05 0.02 0.06 0.03	0.0 0.1 100 2004040810 0.32 0.09 0.06 0.45 0.26
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Reducible Co Organic Co Residual Cu Exchangeable	Zn-Chloride Sphalerite Totals µg µg µg µg µg	0.0 0.0 100 2004040724 0.41 0.05 0.06 0.37 0.11 3.06	0.0 0.0 100 2004040725 0.32 0.06 < 0.02 0.09 < 0.02 3.11	0.0 0.0 100 2004031715 0.43 0.05 0.04 0.05 0.04 0.16 0.04 2.50	0.5 0.0 100 2004031716 0.32 0.05 0.02 0.06 0.03 1 04	0.0 0.1 100 2004040810 0.32 0.09 0.06 0.45 0.26 27.8
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Areducible Co Organic Co Residual Cu Exchangeable Cu Carbonate	Zn-Chloride Sphalerite Totals Hg Hg Hg Hg Hg Hg Hg	0.0 0.0 100 2004040724 0.41 0.05 0.06 0.37 0.11 3.06 0.51	0.0 0.0 100 2004040725 0.32 0.06 < 0.02 0.09 < 0.02 3.11 0.58	0.0 0.0 100 2004031715 0.43 0.05 0.04 0.16 0.04 2.50 0.69	0.5 0.0 100 2004031716 0.32 0.05 0.02 0.06 0.03 1.04 0.26	0.0 0.1 100 2004040810 0.32 0.09 0.06 0.45 0.26 27.8 0.95
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Organic Co Residual Cu Exchangeable Cu Exchangeable Cu Reducible	Zn-Chloride Sphalerite Totals Hg Hg Hg Hg Hg Hg Hg	0.0 0.0 100 2004040724 0.41 0.05 0.06 0.37 0.11 3.06 0.51 0.76	0.0 0.0 100 2004040725 0.32 0.06 < 0.02 0.09 < 0.02 3.11 0.58 0.27	0.0 0.0 100 2004031715 0.43 0.05 0.04 0.16 0.04 2.50 0.69 0.43	0.5 0.0 100 2004031716 0.32 0.05 0.02 0.06 0.03 1.04 0.26 0.33	0.0 0.1 100 2004040810 0.32 0.09 0.06 0.45 0.26 27.8 0.95 0.72
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Reducible Co Organic Co Residual Cu Exchangeable Cu Carbonate Cu Reducible Cu Organic	Zn-Chloride Sphalerite Totals Pg Pg Pg Pg Pg Pg Pg Pg Pg Pg Pg Pg	0.0 0.0 100 2004040724 0.41 0.05 0.06 0.37 0.11 3.06 0.51 0.76 5.36	0.0 0.0 100 2004040725 0.32 0.06 < 0.02 0.09 < 0.02 3.11 0.58 0.27 1.24	0.0 0.0 100 2004031715 0.43 0.05 0.04 0.04 2.50 0.69 0.43 2.08	0.5 0.0 100 2004031716 0.32 0.05 0.02 0.06 0.03 1.04 0.26 0.33 1.18	0.0 0.1 100 2004040810 0.32 0.09 0.06 0.45 0.26 27.8 0.95 0.72 5.29
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Reducible Co Organic Co Residual Cu Exchangeable Cu Carbonate Cu Reducible Cu Grganic Cu Residual	Zn-Chloride Sphalerite Totals Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg	0.0 0.0 100 2004040724 0.41 0.05 0.06 0.37 0.11 3.06 0.51 0.76 5.36 1.32	0.0 0.0 100 2004040725 0.32 0.06 < 0.02 0.09 < 0.02 3.11 0.58 0.27 1.24 0.60	0.0 0.0 100 2004031715 0.43 0.05 0.04 0.16 0.04 2.50 0.69 0.43 2.08 0.57	0.5 0.0 100 2004031716 0.32 0.05 0.05 0.02 0.06 0.03 1.04 0.26 0.33 1.04 0.26 0.33 1.18 0.50	0.0 0.1 100 2004040810 0.32 0.09 0.06 0.45 0.26 27.8 0.95 0.72 5.29 2.85
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Reducible Co Organic Co Residual Cu Exchangeable Cu Carbonate Cu Reducible Cu Organic Cu Reducible Cu Residual Ni Exchangeable	Zn-Chloride Sphalerite Totals Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg	0.0 0.0 100 2004040724 0.41 0.05 0.06 0.37 0.11 3.06 0.51 0.76 5.36 1.32 3.21	0.0 0.0 100 2004040725 0.32 0.06 < 0.02 0.09 < 0.02 3.11 0.58 0.27 1.24 0.60 0.69	0.0 0.0 100 2004031715 0.43 0.05 0.04 0.04 0.04 2.50 0.69 0.43 2.08 0.57 1.20	0.5 0.0 100 2004031716 0.32 0.05 0.05 0.02 0.06 0.03 1.04 0.26 0.33 1.18 0.50 0.50	0.0 0.1 100 2004040810 0.32 0.09 0.06 0.45 0.26 27.8 0.95 0.72 5.29 2.85 0.95
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Organic Co Residual Cu Exchangeable Cu Reducible Cu Reducible Cu Reducible Cu Residual Ni Exchangeable Ni Carbonate	Zn-Chloride Sphalerite Totals Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg	0.0 0.0 100 2004040724 0.41 0.05 0.06 0.37 0.11 3.06 0.51 0.76 5.36 1.32 3.21 0.43	0.0 0.0 100 200440725 0.32 0.06 < 0.02 0.09 < 0.02 3.11 0.58 0.27 1.24 0.60 0.69 0.46	0.0 0.0 100 2004031715 0.43 0.05 0.04 0.16 0.04 2.50 0.69 0.43 2.08 0.57 1.20 0.76	0.5 0.0 100 2004031716 0.32 0.05 0.02 0.06 0.03 1.04 0.26 0.33 1.18 0.50 0.50 0.93	0.0 0.1 100 2004040810 0.32 0.09 0.06 0.45 0.26 27.8 0.95 0.72 5.29 2.85 0.95 0.40
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Reducible Co Aresidual Cu Exchangeable Cu Carbonate Cu Reducible Cu Organic Cu Residual Ni Exchangeable Ni Carbonate Ni Reducible	Zn-Chloride Sphalerite Totals Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg	0.0 0.0 100 2004040724 0.41 0.05 0.06 0.37 0.11 3.06 0.51 0.76 5.36 1.32 3.21 0.43 0.43	0.0 0.0 100 2004040725 0.32 0.06 < 0.02 3.11 0.58 0.27 1.24 0.60 0.69 0.46 0.13	0.0 0.0 100 2004031715 0.43 0.05 0.04 0.04 2.50 0.69 0.43 2.08 0.57 1.20 0.76 0.24	0.5 0.0 100 2004031716 0.32 0.05 0.02 0.06 0.03 1.04 0.26 0.33 1.18 0.50 0.50 0.50 0.93 0.11	0.0 0.1 100 2004040810 0.32 0.09 0.06 0.45 0.26 27.8 0.95 0.72 5.29 2.85 0.95 0.40 0.47
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Reducible Co Residual Cu Exchangeable Cu Carbonate Cu Reducible Cu Organic Cu Residual Ni Exchangeable Ni Carbonate Ni Reducible Ni Organic	Zn-Chloride Sphalerite Totals H9 H9 H9 H9 H9 H9 H9 H9 H9 H9 H9 H9 H9	0.0 0.0 100 2004040724 0.41 0.05 0.06 0.37 0.11 3.06 0.51 0.76 5.36 1.32 3.21 0.43 0.43 0.43 5.04	0.0 0.0 100 2004040725 0.32 0.06 < 0.02 0.09 < 0.02 3.11 0.58 0.27 1.24 0.60 0.69 0.46 0.13 1.15	0.0 0.0 100 2004031715 0.43 0.05 0.04 0.05 0.04 2.50 0.69 0.43 2.50 0.69 0.43 2.57 1.20 0.76 0.24 1.57	0.5 0.0 100 2004031716 0.32 0.05 0.02 0.06 0.03 1.04 0.26 0.33 1.04 0.26 0.33 1.04 0.50 0.50 0.50 0.50 0.93 0.11 0.74	0.0 0.1 100 2004040810 0.32 0.09 0.06 0.45 0.26 27.8 0.95 0.72 5.29 2.85 0.95 0.40 0.40 0.17 2.86
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Organic Co Residual Cu Exchangeable Cu Carbonate Cu Reducible Cu Organic Cu Residual Ni Exchangeable Ni Carbonate Ni Carbonate Ni Carbonate Ni Reducible Ni Carbonate Ni Reducible Ni Reducible Ni Reducible Ni Residual	Zn-Chloride Sphalerite Totals Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg	0.0 0.0 100 2004040724 0.41 0.05 0.06 0.37 0.11 3.06 0.51 0.76 5.36 1.32 3.21 0.43 0.43 0.43 0.43 5.04 1.79	0.0 0.0 100 2004040725 0.32 0.06 < 0.02 0.09 < 0.02 3.11 0.58 0.27 1.24 0.60 0.69 0.46 0.13 1.15 0.55	0.0 0.0 100 2004031715 0.43 0.05 0.04 0.16 0.04 2.50 0.69 0.43 2.08 0.57 1.20 0.76 0.24 1.57 0.64	0.5 0.0 100 2004031716 0.32 0.05 0.02 0.06 0.03 1.04 0.33 1.18 0.50 0.33 1.18 0.50 0.93 0.93 0.11 0.74 0.25	0.0 0.1 100 2004040810 0.32 0.09 0.06 0.45 0.26 27.8 0.95 0.72 5.29 2.85 0.95 0.40 0.17 2.86 2.66
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Organic Co Residual Cu Exchangeable Cu Carbonate Cu Reducible Cu Reducible Cu Residual Ni Exchangeable Ni Carbonate Ni Residual Pb Exchangeable	Zn-Chloride Sphalerite Totals Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg	0.0 0.0 100 2004040724 0.41 0.05 0.06 0.37 0.11 3.06 0.51 0.76 5.36 1.32 3.21 0.43 0.43 5.04 1.79 2.20	0.0 0.0 100 2004040725 0.32 0.06 < 0.02 3.11 0.58 0.27 1.24 0.60 0.69 0.46 0.13 1.15 0.55 1.81	0.0 0.0 100 2004031715 0.43 0.05 0.04 0.04 2.50 0.69 0.43 2.08 0.57 1.20 0.76 0.24 1.57 0.24 1.57 0.24 1.57	0.5 0.0 100 2004031716 0.32 0.05 0.02 0.06 0.03 1.04 0.26 0.33 1.18 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	0.0 0.1 100 2004040810 0.32 0.09 0.06 0.45 0.26 27.8 0.95 0.72 5.29 2.85 0.95 0.72 5.29 2.85 0.95 0.40 0.17 2.86 2.66
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Reducible Co Aesidual Cu Exchangeable Cu Granic Cu Residual Ni Exchangeable Ni Carbonate Ni Reducible Ni Reducible Ni Reducible Ni Reducible Ni Residual Pb Exchangeable Pb Carbonate	Zn-Chloride Sphalerite Totals Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg	0.0 0.0 100 2004040724 0.41 0.05 0.06 0.37 0.11 3.06 0.51 0.76 5.36 1.32 3.21 0.43 0.43 0.43 0.43 5.04 1.79 2.20 0.47	0.0 0.0 100 200440725 0.32 0.06 < 0.02 3.11 0.58 0.27 1.24 0.60 0.69 0.46 0.13 1.15 0.55 1.81 0.25	0.0 0.0 100 2004031715 0.43 0.05 0.04 0.04 2.50 0.69 0.43 2.08 0.57 1.20 0.57 1.20 0.57 1.20 0.76 0.24 1.57 0.64 1.05 0.24	0.5 0.0 100 2004031716 0.32 0.05 0.02 0.06 0.03 1.04 0.26 0.33 1.18 0.50 0.50 0.50 0.50 0.50 0.93 0.11 0.74 0.25 0.77 0.14	0.0 0.1 100 2004040810 0.32 0.09 0.06 0.45 0.26 27.8 0.95 0.72 5.29 2.85 0.95 0.40 0.17 2.86 2.66 2.66 2.25 0.45
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Reducible Co Residual Cu Exchangeable Cu Carbonate Cu Carbonate Cu Organic Cu Residual Ni Exchangeable Ni Carbonate Ni Reducible Ni Reducible Ni Residual Pb Exchangeable Pb Carbonate Pb Reducible	Zn-Chloride Sphalerite Totals Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg	0.0 0.0 100 2004040724 0.41 0.05 0.06 0.37 0.11 3.06 0.51 0.76 5.36 1.32 3.21 0.43 0.43 0.43 5.04 1.79 2.20 0.47 0.44	0.0 0.0 100 2004040725 0.32 0.06 < 0.02 0.09 < 0.02 3.11 0.58 0.27 1.24 0.60 0.69 0.46 0.13 1.15 0.55 1.81 0.25 0.14	0.0 0.0 100 2004031715 0.43 0.05 0.04 0.06 0.04 2.50 0.69 0.43 2.50 0.69 0.43 2.50 0.69 0.43 2.50 0.57 1.20 0.76 0.24 1.57 0.64 1.05 0.64 1.05 0.24 0.17	0.5 0.0 100 2004031716 0.32 0.05 0.02 0.06 0.03 1.04 0.26 0.33 1.18 0.50 0.50 0.50 0.50 0.50 0.50 0.93 0.11 0.74 0.25 0.77 0.14 0.14	0.0 0.1 100 2004040810 0.32 0.09 0.06 0.45 0.26 27.8 0.95 0.72 5.29 2.85 0.95 0.40 0.17 2.86 2.66 2.25 0.45 0.28
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Organic Co Residual Cu Exchangeable Cu Carbonate Cu Reducible Cu Carbonate Cu Reducible Ni Exchangeable Ni Exchangeable Ni Reducible Ni Reducible Ni Reducible Pb Exchangeable Pb Carbonate Pb Reducible Pb Cananic	Zn-Chloride Sphalerite Totals Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg	0.0 0.0 100 2004040724 0.41 0.05 0.06 0.37 0.11 3.06 0.51 0.76 5.36 1.32 3.21 0.43 0.43 0.43 0.43 5.04 1.79 2.20 0.47 0.44 0.39	0.0 0.0 100 2004040725 0.32 0.06 < 0.02 0.09 < 0.02 3.11 0.58 0.27 1.24 0.60 0.69 0.46 0.13 1.15 0.55 1.81 0.25 0.14 0.13	0.0 0.0 100 2004031715 0.43 0.05 0.04 0.04 2.50 0.69 0.43 2.08 0.57 1.20 0.76 0.24 1.57 0.24 1.05 0.24 1.05 0.24 0.17 0.15	0.5 0.0 100 2004031716 0.32 0.05 0.02 0.06 0.03 1.04 0.26 0.33 1.18 0.50 0.50 0.93 0.11 0.74 0.25 0.77 0.14 0.14 0.16	0.0 0.1 100 2004040810 0.32 0.09 0.06 0.45 0.26 27.8 0.95 0.72 5.29 2.85 0.95 0.40 0.17 2.86 2.26 0.45 0.45 0.28 0.28 0.28 0.55
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Reducible Co Organic Co Residual Cu Exchangeable Cu Carbonate Cu Reducible Cu Residual Ni Exchangeable Ni Carbonate Ni Carbonate Ni Carbonate Ni Reducible Ni Residual Pb Exchangeable Pb Carbonate Pb Carbonate Pb Reducible Pb Carbonate Pb Reducible Pb Organic Pb Residual	Zn-Chloride Sphalerite Totals Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg	0.0 0.0 100 2004040724 0.41 0.05 0.06 0.37 0.11 3.06 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51	0.0 0.0 100 2004040725 0.32 0.06 < 0.02 3.11 0.58 0.02 3.11 0.58 0.27 1.24 0.60 0.69 0.46 0.13 1.15 0.55 1.81 0.25 0.14 0.25 0.14 0.03 0.09	0.0 0.0 100 2004031715 0.43 0.05 0.04 0.04 2.50 0.69 0.43 2.08 0.57 1.20 0.76 0.24 1.57 0.24 1.57 0.24 1.57 0.24 0.64 1.05 0.24 0.17 0.05	0.5 0.0 100 2004031716 0.32 0.05 0.02 0.06 0.03 1.04 0.26 0.33 1.08 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0	0.0 0.1 100 2004040810 0.32 0.09 0.06 0.45 0.26 27.8 0.95 0.72 5.29 2.85 0.95 0.40 0.17 2.86 2.66 2.66 2.65 0.28 0.28 0.28 0.25 0.35
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Reducible Co Organic Co Residual Cu Exchangeable Cu Organic Cu Residual Ni Exchangeable Ni Carbonate Ni Reducible Ni Reducible Ni Reducible Ni Residual Pb Exchangeable Pb Carbonate Pb Carbonate Pb Reducible Pb Organic Pb Reducible Pb Organic Pb Reducible Pb Organic Pb Residual Se Exchangeable	Zn-Chloride Sphalerite Totals Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg	0.0 0.0 100 2004040724 0.41 0.05 0.06 0.37 0.11 3.06 0.51 0.76 5.36 1.32 3.21 0.43 0.43 0.43 0.43 5.04 1.79 2.20 0.47 0.44 0.39 0.11 0.8	0.0 0.0 100 2004040725 0.32 0.06 < 0.02 3.11 0.58 0.27 1.24 0.60 0.69 0.46 0.13 1.15 0.55 1.81 0.25 1.81 0.25 0.14 0.13 0.7	0.0 0.0 100 2004031715 0.43 0.05 0.04 0.04 2.50 0.69 0.43 2.08 0.57 1.20 0.57 1.20 0.57 1.20 0.57 1.20 0.57 1.20 0.57 1.20 0.54 0.24 1.57 0.64 0.24 0.17 0.15 0.24 0.17 0.15 0.09 1.1	0.5 0.0 100 2004031716 0.32 0.05 0.02 0.06 0.03 1.04 0.26 0.33 1.18 0.50 0.50 0.50 0.50 0.50 0.93 0.11 0.74 0.25 0.77 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.11 0.5	0.0 0.1 100 2004040810 0.32 0.09 0.06 0.45 0.26 27.8 0.95 0.72 5.29 2.85 0.95 0.40 0.17 2.86 2.66 2.66 2.66 2.66 2.66 2.66 2.66
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Reducible Co Residual Cu Exchangeable Cu Carbonate Cu Carbonate Cu Carbonate Ni Exchangeable Ni Carbonate Ni Reducible Ni Carbonate Ni Reducible Di Carbonate Ni Residual Pb Exchangeable Pb Carbonate Pb Reducible Pb Residual Se Exchangeable Se Carbonate	Zn-Chloride Sphalerite Totals Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg	0.0 0.0 100 2004040724 0.41 0.05 0.06 0.37 0.11 3.06 0.51 0.76 5.36 1.32 3.21 0.43 0.43 0.43 0.43 5.04 1.79 2.20 0.47 0.47 0.44 0.39 0.11 0.8 1.0	0.0 0.0 100 2004040725 0.32 0.06 < 0.02 0.09 < 0.02 3.11 0.58 0.27 1.24 0.60 0.69 0.46 0.69 0.46 0.69 0.46 0.13 1.15 0.55 1.81 0.25 0.14 0.13 0.09 0.7 0.3	0.0 0.0 100 2004031715 0.43 0.05 0.04 0.04 2.50 0.69 0.43 2.50 0.69 0.43 2.50 0.69 0.43 2.50 0.69 0.43 2.50 0.69 0.43 2.50 0.64 1.20 0.76 0.24 1.57 0.64 1.05 0.24 0.17 0.15 0.09 1.1 0.66	0.5 0.0 100 2004031716 0.32 0.05 0.02 0.06 0.03 1.04 0.26 0.33 1.18 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	0.0 0.1 100 2004040810 0.32 0.09 0.06 0.45 0.26 27.8 0.95 0.72 5.29 2.85 0.95 0.40 0.17 2.86 2.66 2.25 0.45 0.28 0.55 0.35 0.5 0.9
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Reducible Co Organic Co Residual Cu Exchangeable Cu Carbonate Cu Reducible Cu Carbonate Cu Reducible Cu Reducible Ni Carbonate Ni Carbonate Ni Reducible Ni Carbonate Ni Reducible Pb Cranonate Pb Reducible Pb Carbonate Pb Reducible Pb Carbonate Pb Reducible Pb Residual Se Exchangeable Se Carbonate Se Reducible	Zn-Chloride Sphalerite Totals H9 H9 H9 H9 H9 H9 H9 H9 H9 H9 H9 H9 H9	0.0 0.0 100 2004040724 0.41 0.05 0.06 0.37 0.11 3.06 0.51 0.76 5.36 1.32 3.21 0.43 0.43 0.43 5.04 1.79 2.20 0.47 0.44 0.39 0.11 0.8 1.0 0.8	0.0 0.0 100 2004040725 0.32 0.06 < 0.02 3.11 0.58 0.27 1.24 0.60 0.69 0.46 0.13 1.15 0.55 1.81 0.25 0.14 0.13 0.09 0.7 0.3 0.7	0.0 0.0 100 2004031715 0.43 0.05 0.04 0.04 2.50 0.69 0.43 2.08 0.57 1.20 0.76 0.24 1.57 0.24 1.05 0.24 0.17 0.15 0.09 1.1 0.6 0.6	0.5 0.0 100 2004031716 0.32 0.05 0.02 0.06 0.03 1.04 0.26 0.33 1.18 0.50 0.50 0.93 0.11 0.74 0.25 0.77 0.14 0.14 0.14 0.11 0.5 0.3 0.7	0.0 0.1 100 2004040810 0.32 0.09 0.06 0.45 0.26 27.8 0.95 0.72 5.29 2.85 0.95 0.40 0.17 2.86 2.25 0.40 0.17 2.86 2.25 0.45 0.28 0.55 0.35 0.5 0.9 0.7
	Zn,Cl Zn>Fe, S	Refining? Ore Chemical Analysis Co Exchangeable Co Carbonate Co Reducible Co Organic Co Residual Cu Exchangeable Cu Carbonate Cu Residual Ni Exchangeable Ni Carbonate Ni Carbonate Ni Carbonate Ni Carbonate Ni Reducible Pb Exchangeable Pb Carbonate Pb Exchangeable Pb Carbonate Pb Reducible Pb Carbonate Pb Reducible Pb Carbonate Pb Reducible Pb Carbonate Pb Residual Se Exchangeable Se Carbonate Se Reducible Se Carbonate	Zn-Chloride Sphalerite Totals Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg Hg	0.0 0.0 100 2004040724 0.41 0.05 0.06 0.37 0.11 3.06 0.51 0.76 5.36 1.32 3.21 0.43 0.43 5.04 1.32 2.20 0.47 0.44 0.43 5.04 1.79 2.20 0.47 0.44 0.39 0.11 0.8 1.0 0.8 1.9	0.0 0.0 100 2004040725 0.32 0.06 < 0.02 3.11 0.58 0.02 3.11 0.58 0.27 1.24 0.60 0.69 0.46 0.13 1.15 0.55 1.81 0.25 0.14 0.25 0.14 0.13 0.09 0.7 0.3 0.09	0.0 0.0 100 2004031715 0.43 0.05 0.04 0.16 0.04 2.50 0.69 0.43 2.08 0.57 1.20 0.76 0.24 1.57 0.24 1.57 0.24 1.57 0.24 0.64 0.24 0.15 0.09 1.1 0.6 0.9 9	0.5 0.0 100 2004031716 0.32 0.05 0.02 0.06 0.03 1.04 0.26 0.33 1.04 0.26 0.33 1.18 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	0.0 0.1 100 2004040810 0.32 0.09 0.06 0.45 0.26 27.8 0.95 0.72 5.29 2.85 0.95 0.45 0.95 0.40 0.17 2.66 2.66 2.25 0.45 0.28 0.28 0.28 0.55 0.35 0.5 0.5 0.7 0.7

2004040812	2004040813	2004040815	2004040816	2004072106
6	7	8	9	10
7.4	1.3	20.3	53.9	1.3
0.0	0.0	2.5	0.0	0.0
0.0	0.0	0.0	0.0	9.3
0.0	0.0	0.0	87	0.0
0.0	0.0	0.0		0.0
24.0	22.0	34.0	1.5	40.3
28.6	26.2	0.9	10.0	16.1
0.0	0.0	0.0	1.9	0.0
0.0	4.0	7.0	0.0	0.0
0.0	0.0	6.0	0.0	0.0
0.0	0.0	0.5	0.0	0.0
0.0	0.0	11 7	0.0	0.0
0.0	0.0	0.0	7 1	0.0
0.0	0.0	0.0	0.5	0.0
0.0	0.0	0.0	0.5	0.0
15.5	37.8	12.5	11.7	22.9
0.0	0.0	0.0	0.0	0.0
0.2	1.6	0.0	0.0	8.0
0.0	0.0	0.0	0.4	0.0
0.0	0.0	0.0	0.0	0.0
0.7	7.0	1.8	11	1.6
0.7	7.0	0.0	0.0	1.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
11.0	0.0	0.0	0.0	0.0
12.6	0.0	2.9	1.7	0.5
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0
			0.0	0.0
0.0	0.0	0.0	0.5	0.0
0.0	0.0 0.0 100	0.0	0.5	0.0 100
0.0 100 2004040812	0.0 0.0 100 2004040813	0.0 0.0 100 2004040815	0.5 100 2004040816	0.0 100 2004072106
0.0 100 2004040812 1.28	0.0 0.0 100 2004040813 0.48	0.0 0.0 100 2004040815 0.19	0.5 100 2004040816 0.16	0.0 100 2004072106 0.15
0.0 100 2004040812 1.28 0.21	0.0 0.0 100 2004040813 0.48 0.10	0.0 100 2004040815 0.19 0.05	0.5 100 2004040816 0.16 0.07	0.0 100 2004072106 0.15 0.08
0.0 100 2004040812 1.28 0.21 1.24	0.0 0.0 100 2004040813 0.48 0.10 0.22	0.0 0.0 100 2004040815 0.19 0.05 < 0.02	0.5 100 2004040816 0.16 0.07 < 0.02	0.0 100 2004072106 0.15 0.08 0.21
0.0 100 2004040812 1.28 0.21 1.34	0.0 0.0 100 2004040813 0.48 0.10 0.32 0.74	0.0 0.0 100 2004040815 0.19 0.05 < 0.02	0.5 100 2004040816 0.16 0.07 < 0.02	0.0 100 2004072106 0.15 0.08 0.21
0.0 100 2004040812 1.28 0.21 1.34 4.66 1.24	0.0 0.0 100 2004040813 0.48 0.10 0.32 0.71 0.72	0.0 0.0 100 2004040815 0.19 0.05 < 0.02 0.11 0.02	0.5 100 2004040816 0.16 0.07 < 0.02 0.04	0.0 100 2004072106 0.15 0.08 0.21 < 0.02 < 0.02
0.0 100 2004040812 1.28 0.21 1.34 4.66 1.34	0.0 0.0 100 2004040813 0.48 0.10 0.32 0.71 0.28	0.0 0.0 100 2004040815 0.19 0.05 < 0.02 0.11 0.09	0.5 100 2004040816 0.16 0.07 < 0.02 0.04 0.04	0.0 100 2004072106 0.15 0.08 0.21 < 0.02 0.40
0.0 100 2004040812 1.28 0.21 1.34 4.66 1.34 44.8	0.0 100 2004040813 0.48 0.10 0.32 0.71 0.28 10.6	0.0 0.0 100 2004040815 0.19 0.05 < 0.02 0.11 0.09 6.25	0.5 100 2004040816 0.16 0.07 < 0.02 0.04 0.04 3.49	0.0 100 2004072106 0.15 0.08 0.21 < 0.02 0.40 12.3
0.0 100 2004040812 1.28 0.21 1.34 4.66 1.34 44.8 8.21	0.0 0.0 100 2004040813 0.48 0.10 0.32 0.71 0.28 10.6 1.82	0.0 100 2004040815 0.19 0.05 < 0.02 0.11 0.09 6.25 1.25	0.5 100 2004040816 0.16 0.07 < 0.02 0.04 0.04 3.49 1.04	0.0 100 2004072106 0.15 0.08 0.21 < 0.02 0.40 12.3 1.84
0.0 100 20040040812 1.28 0.21 1.34 4.66 1.34 4.8 8.21 1.37	0.0 100 2004040813 0.48 0.10 0.32 0.71 0.28 10.6 1.82 5.29	0.0 100 2004040815 0.19 0.05 < 0.02 0.11 0.09 6.25 1.25 1.04	0.5 100 2004040816 0.16 0.07 < 0.02 0.04 0.04 3.49 1.04 0.68	0.0 100 2004072106 0.15 0.08 0.21 < 0.02 0.40 12.3 1.84 1.89
0.0 100 2004040812 1.28 0.21 1.34 4.66 1.34 44.8 8.21 1.37 97.5	0.0 100 2004040813 0.48 0.10 0.32 0.71 0.28 10.6 1.82 5.29 18.9	0.0 100 2004040815 0.19 0.05 < 0.02 0.11 0.09 6.25 1.25 1.04 4.57	0.5 100 2004040816 0.16 0.07 < 0.02 0.04 0.04 0.04 3.49 1.04 0.68 3.04	0.0 100 2004072106 0.15 0.08 0.21 < 0.02 0.40 12.3 1.84 1.89 1.83
0.0 100 2004040812 1.28 0.21 1.34 4.66 1.34 4.8 8.21 1.37 97.5 28.0	0.0 100 2004040813 0.48 0.10 0.32 0.71 0.28 10.6 1.82 5.29 18.9 5.49	0.0 100 2004040815 0.19 0.05 < 0.02 0.11 0.09 6.25 1.25 1.04 4.57 2.77	0.5 100 2004040816 0.16 0.07 < 0.02 0.04 0.04 0.04 3.49 1.04 0.68 3.04 2.32	0.0 100 2004072106 0.15 0.08 0.21 < 0.02 0.40 12.3 1.84 1.89 1.83 11.0
0.0 100 2004040812 1.28 0.21 1.34 4.66 1.34 4.4.8 8.21 1.37 97.5 28.0 24.3	0.0 100 2004040813 0.48 0.10 0.32 0.71 0.28 10.6 1.82 5.29 18.9 5.49 4.52	0.0 100 2004040815 0.19 0.05 < 0.02 0.11 0.09 6.25 1.04 4.57 2.77 0.13	0.5 100 2004040816 0.16 0.07 < 0.02 0.04 0.04 3.49 1.04 0.68 3.04 2.32 0.01	0.0 100 2004072106 0.15 0.08 0.21 < 0.02 0.40 12.3 1.84 1.89 1.83 11.0 4.33
0.0 100 2004040812 1.28 0.21 1.34 4.66 1.34 44.8 8.21 1.37 97.5 28.0 24.3 2.50	0.0 100 2004040813 0.48 0.10 0.32 0.71 0.28 10.6 1.82 5.29 18.9 5.49 4.52 0.06	0.0 100 2004040815 0.19 0.05 < 0.02 0.11 0.09 6.25 1.25 1.04 4.57 2.77 0.13 0.13	0.5 100 2004040816 0.16 0.07 < 0.02 0.04 0.04 3.49 1.04 0.68 3.04 2.32 0.01 0.20	0.0 100 2004072106 0.15 0.08 0.21 < 0.02 0.40 12.3 1.84 1.89 1.83 11.0 4.33 1.12
0.0 100 2004040812 1.28 0.21 1.34 4.66 1.34 4.8 8.21 1.37 97.5 28.0 24.3 3.59 24.3	0.0 100 2004040813 0.48 0.10 0.32 0.71 0.28 10.6 1.82 5.29 18.9 5.49 4.52 0.96	0.0 100 2004040815 0.19 0.05 < 0.02 0.11 0.09 6.25 1.25 1.04 4.57 2.77 0.13 0.13 0.13 0.13	0.5 100 2004040816 0.16 0.07 < 0.02 0.04 0.04 0.04 3.04 2.32 0.01 0.20 0.25	0.0 100 2004072106 0.15 0.08 0.21 < 0.02 0.40 12.3 1.84 1.89 1.83 11.0 4.33 1.12 1.12
2004040812 1.28 0.21 1.34 4.66 1.34 4.4.8 8.21 1.37 97.5 28.0 24.3 3.59 4.09 25	0.0 100 2004040813 0.48 0.10 0.32 0.71 0.28 10.6 1.82 5.29 18.9 5.49 4.52 0.96 1.81	0.0 0.0 2004040815 0.19 0.05 < 0.02 0.11 0.09 6.25 1.04 4.57 2.77 0.13 0.13 0.02	0.5 100 2004040816 0.16 0.07 < 0.02 0.04 0.04 3.49 1.04 0.68 3.04 2.32 0.01 0.20 0.20 0.05	0.0 100 2004072106 0.15 0.08 0.21 < 0.02 0.40 12.3 1.84 1.89 1.83 11.0 4.33 1.12 1.61
100 2004040812 1.28 0.21 1.34 4.66 1.34 44.8 8.21 1.37 97.5 28.0 24.3 3.59 4.09 52.2	0.0 100 2004040813 0.48 0.10 0.32 0.71 0.28 10.6 1.82 5.29 18.9 5.49 4.52 0.96 1.81 10.3	0.0 0.0 100 2004040815 0.19 0.05 < 0.02 0.11 0.09 6.25 1.04 4.57 2.77 0.13 0.13 0.02 0.67	0.5 100 2004040816 0.16 0.07 < 0.02 0.04 0.04 3.49 1.04 0.68 3.04 2.32 0.01 0.20 0.05 0.19	0.0 100 2004072106 0.15 0.08 0.21 < 0.02 0.40 12.3 1.84 1.89 1.83 11.0 4.33 1.12 1.61 0.01
0.0 100 2004040812 1.28 0.21 1.34 4.66 1.34 4.8 8.21 1.37 97.5 28.0 24.3 3.59 4.09 52.2 23.6	0.0 100 2004040813 0.48 0.10 0.32 0.71 0.28 10.6 1.82 5.29 18.9 5.49 4.52 0.96 1.81 10.3 4.35	0.0 100 2004040815 0.19 0.05 < 0.02 0.11 0.09 6.25 1.25 1.04 4.57 2.77 0.13 0.13 0.02 0.67 1.24	0.5 100 2004040816 0.16 0.07 < 0.02 0.04 0.04 0.04 3.04 2.32 0.01 0.20 0.05 0.19 0.71	0.0 100 2004072106 0.15 0.08 0.21 < 0.02 0.40 12.3 1.84 1.83 11.0 4.33 1.12 1.61 0.01 11.1
0.0 100 2004040812 1.28 0.21 1.34 4.66 1.34 44.8 8.21 1.37 97.5 28.0 24.3 3.59 4.09 52.2 23.6 10.8	0.0 100 2004040813 0.48 0.10 0.32 0.71 0.28 10.6 1.82 5.29 18.9 5.49 4.52 0.96 1.81 10.3 4.35 8.21	0.0 100 2004040815 0.19 0.05 < 0.02 0.11 0.09 6.25 1.04 4.57 2.77 0.13 0.13 0.02 0.67 1.24 0.71	0.5 100 2004040816 0.16 0.07 < 0.02 0.04 0.04 3.49 1.04 0.68 3.04 2.32 0.01 0.20 0.05 0.19 0.71 0.46	0.0 100 2004072106 0.15 0.08 0.21 < 0.02 0.40 12.3 1.84 1.89 1.83 11.0 4.33 1.12 1.61 0.01 11.1 1.69
100 2004040812 1.28 0.21 1.34 4.66 1.34 44.8 8.21 1.37 97.5 28.0 24.3 3.59 4.09 52.2 23.6 10.8 2.75	0.0 100 2004040813 0.48 0.10 0.32 0.71 0.28 10.6 1.82 5.29 18.9 5.49 4.52 0.96 1.81 10.3 4.35 8.21 1.40	0.0 100 2004040815 0.19 0.05 < 0.02 0.11 0.09 6.25 1.25 1.04 4.57 2.77 0.13 0.02 0.67 1.24 0.71 0.18	0.5 100 2004040816 0.16 0.07 < 0.02 0.04 0.04 3.49 1.04 0.68 3.04 2.32 0.01 0.20 0.05 0.19 0.71 0.46 0.19	0.0 100 2004072106 0.15 0.08 0.21 < 0.02 0.40 12.3 1.84 1.89 1.83 11.0 4.33 1.12 1.61 0.01 11.1 1.69 0.68
0.0 100 2004040812 1.28 0.21 1.34 4.66 1.34 4.4.8 8.21 1.37 97.5 28.0 24.3 3.59 4.09 52.2 23.6 10.8 2.75 1.59	0.0 100 2004040813 0.48 0.10 0.32 0.71 0.28 10.6 1.82 5.29 18.9 5.49 4.52 0.96 1.81 10.3 4.35 8.21 1.40 0.68	0.0 100 2004040815 0.19 0.05 < 0.02 0.11 0.09 6.25 1.25 1.04 4.57 2.77 0.13 0.13 0.02 0.67 1.24 0.71 0.18 0.14	0.5 100 2004040816 0.16 0.07 < 0.02 0.04 0.04 0.04 3.04 2.32 0.01 0.20 0.05 0.19 0.71 0.46 0.19 0.72	0.0 100 2004072106 0.15 0.08 0.21 < 0.02 0.40 12.3 1.84 1.89 1.83 11.0 4.33 1.12 1.61 0.01 11.1 1.69 0.68 0.66
0.0 100 2004040812 1.28 0.21 1.34 4.66 1.34 4.4.8 8.21 1.37 97.5 28.0 24.3 3.59 4.09 52.2 23.6 10.8 2.75 1.59 3.66	0.0 100 2004040813 0.48 0.10 0.32 0.71 0.28 10.6 1.82 5.29 18.9 5.49 4.52 0.96 1.81 10.3 4.35 8.21 1.40 0.68 0.96	0.0 0.0 2004040815 0.19 0.05 < 0.02 0.11 0.09 6.25 1.04 4.57 2.77 0.13 0.13 0.02 0.67 1.24 0.71 0.18 0.14 0.38	0.5 100 2004040816 0.16 0.07 < 0.02 0.04 0.04 3.49 1.04 0.68 3.04 2.32 0.01 0.20 0.20 0.05 0.19 0.71 0.46 0.19 0.22 0.21	0.0 100 2004072106 0.15 0.08 0.21 < 0.02 0.40 12.3 1.84 1.89 1.83 11.0 4.33 1.12 1.61 0.01 1.1.1 1.69 0.68 0.668 0.061
2004040812 1.28 0.21 1.34 4.66 1.34 4.48 8.21 1.37 97.5 28.0 24.3 3.59 4.09 52.2 23.6 10.8 2.75 1.59 3.66 1.59 3.66 1.59	0.0 100 2004040813 0.48 0.10 0.32 0.71 0.28 10.6 1.82 5.29 18.9 5.49 4.52 0.96 1.81 10.3 4.35 8.21 1.40 0.68 0.96 0.96	0.0 100 2004040815 0.19 0.05 < 0.02 0.11 0.09 6.25 1.25 1.04 4.57 2.77 0.13 0.13 0.13 0.02 0.67 1.24 0.71 0.18 0.14 0.38 0.22	0.5 100 2004040816 0.16 0.07 < 0.02 0.04 0.04 3.49 1.04 0.68 3.04 2.32 0.01 0.20 0.05 0.19 0.71 0.46 0.19 0.22 0.21 0.22	0.0 100 2004072106 0.15 0.08 0.21 < 0.02 0.40 12.3 1.84 1.89 1.83 11.0 4.33 1.12 1.61 0.01 11.1 1.69 0.68 0.66 0.01 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.08 0.21 0.02 0.40 1.55 0.08 0.21 0.02 0.40 1.55 0.08 0.21 0.02 0.40 1.55 0.08 0.21 0.40 1.55 0.02 0.40 1.55 0.02 0.40 1.55 0.02 0.40 1.55 0.02 1.55 0.02 0.40 1.55 0.02 1.55 0.02 0.40 1.55 0.02 1.55 0.02 1.55 0.02 0.40 1.55 0.02 1.55 0.02 0.40 1.53 1.10 0.43 0.12 0.01 0.01 0.02 0.03 0.02

0.0	0.0	1.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.5	0.0
100	100	100	100
2004040813	2004040815	2004040816	2004072106
0.48	0.19	0.16	0.15
0.10	0.05	0.07	0.08
0.32	< 0.02	< 0.02	0.21
0.71	0.11	0.04	< 0.02
0.28	0.09	0.04	0.40
10.6	6.25	3.49	12.3
1.82	1.25	1.04	1.84
5.29	1.04	0.68	1.89
18.9	4.57	3.04	1.83
5.49	2.77	2.32	11.0
4.52	0.13	0.01	4.33
0.96	0.13	0.20	1.12
1.81	0.02	0.05	1.61
10.3	0.67	0.19	0.01
4.35	1.24	0.71	11.1
8.21	0.71	0.46	1.69
1.40	0.18	0.19	0.68
0.68	0.14	0.22	0.66
0.96	0.38	0.21	0.01
0.43	0.29	0.22	0.56
0.3	0.3	0.5	0.4
0.6	0.1	0.1	0.6
0.5	0.6	0.7	0.6
1.3	0.8	0.7	0.6
1.5	1.2	0.6	0.1

0.6 0.1 0.7 1.9 1.0

Average	
18.4	Anglesite
0.2	Galena
0.9	Pb-Alloy(?)
0.9	Pb-Pd-Alloy(?)
19.7	Chalcopyrite
13.2	Cu-Matte
3.3	Cu-Sulphate
1.6	Cu-Oxide
0.9	Cu-Metal
0.0	Cu-Sb-Oxide
1.2	Brass
0.7	Argentotennantite(?)
0.1	Ag-Cu-Alloy
20.9	Pentlandite
0.2	Co-Pentlandite
1.5	Millerite
0.0	Pyrrhotite
0.1	Ni-Arsenide
6.0	Ni-Oxide
0.7	Fe/Mn/Ni-Oxide
0.4	Ni-Oxide
2.0	Ni-Matte
2.6	Ni-Suphate
0.5	Ni-Suphate
0.6	Ni-Slag
1.1	Steel
0.7	Zn-Oxide
1.5	Zn-Sulphate
0.0	Zn-Chloride
0.1	Sphalerite

31

сос	Inferred Mineral from EDS	Qualification/Interpretation	Possible Derivation	2004040811	2004040722
Pb	anglesite Pb-Sn	PbSO4: May in cases be galena (PbS) Pb/Sn alloy: either solder or other	Smelting/Refining(?) Domestic(?)	3.2 1.4	3.5 -
Zn	sphalerite	ZnS; trace Ore mineral	Ore	5.4	-
Cu	tetrahedrite(?) chalcopyrite Cu>S Cu-sulphate Cu-Oxide Cu-Metal brass	Cu-Sb-S; trace ore mineral Cu-Fe-S; essential ore mineral Cu2S: matte sulphide/chalcocite-phase Cu-S-O phase; Cu-refining phase CuO: Cu-refining phase CuO: Cu-refining phase Cu>Zn; domestic or miscellaneous	Ore Ore Smelter/matte/refining Refining Refining Domestic/Other	27.8 26.7 - - - -	21.8 9.1 1.6 - 11.2
Ni,Co	pentlandite millerite Ni>S Ni-Sulphate Ni-oxide Total	Fe-Ni-Sulphide; major ore mineral NiS Ni3S2; nickel subsulphide Cu-S-O phase; Cu-refining phase NiO: Ni-refining phase	Ore Ore Smelter/matte/refining Refining Refining	19.8 9.0 - 3.1 3.6 100.0	31.5 4.8 2.1 1.2 13.1 100.0

Additional TSP Filters for Due Diligence Reference

APPENDIX 3: Soil Results

Sample ID	Compound	Probable Origin	502ss	504ss	507ss	512ss	516ss	522ss	561ss	569ss	584ss	597ss
nglesite	Pb-S-O	Smelter Fumes	12.4	1.7	1.1	2.0	1.1	2.4	0.2	0.1	11.7	0.5
b-SS	Pb-Sb-Ag	Ore/Refining	7.5	1.7	0.0	1.1	0.3	0.7	0.0	0.0	0.6	0.1
Balena	PbS	Ore	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.0	0.9	0.0
	L	1.		1 1		1 1	1 1			1 1	1 1	
rsenopyrite	FeAsS	Ore	4.8	0.6	0.0	0.0	0.0	0.0	0.0	0.8	0.0	0.0
nargite	Cu ₁₂ AsS ₁₃	Ore	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1
		1		l I	1	1 1	l I	1	1	I I	1 I	1
					<u> </u>			<u>.</u> .	<u> </u>		<u> </u>	o -
srass	Cu-Zn	Miscellaneous	2.0	0.0	0.0	3.9	0.8	0.4	0.0	0.6	8.5	0.5
naicopyrite		Ure	24.8	2.4	11.2	0.0	J.1	15.6	0.3	2.6	0.0	0.0
u- watte	Cu ₂ S	Watte	0.0	0.0	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.0
u-Alloy		Refining	0.0	0.0	1.2	2.3	0.0	48.5	7.3	0.0	0.0	1.8
u-Uxide		Remining	2.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
e-Cu Oxide	re-Cu-O	Retining	0.0	0.0	0.0	1.2	0.0	0.0	0.3	0.0	0.0	37.9
u-Siag	Cu-⊢e-Mg-Si-O	Retining/Smelter	U.U	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.4	0.0
ontion dir -	Eo Ni C	0.0	E 0		40.0		o1 -	<u> </u>		<u>,</u> ,		
entianoite	Feshi408	Definition	5.3	1.2	46.8	0.0	31.7	0.7	0.6	2.1	0.0	0.2
e-NI-Cu Alloy	re-Ni-Cu	Retining	0.0	0.0	3.8	0.0	0.0	0.0	13.9	1.9	7.8	0.1
II-Fe-Co Alloy	NI-Fe-Co	Retining	0.0	0.0	0.0	0.0	0.0	0.0	0.0	16.3	0.0	0.0
II-Fe- Alloy	NI-Fe	Retining	10.4	4.4	6.2	0.0	/.1	5.5	55.2	0.0	23.8	0.0
II-Co Oxide	NI-Co-O	Retining	0.0	5.8	0.0	6.9	0.0	0.0	0.0	0.0	0.0	0.0
II-Fe-Oxide	NI-Fe-O	Retining	30.9	76.2	23.0	76.4	37.3	26.0	1.1	73.2	0.0	49.4
n-Gu-Fe Oxide	NI-GU-Fe-O	Retining	0.0	0.0	0.0	3.6	17.9	0.0	20.8	2.4	26.8	9.2
li-Fe Sulphate	Ni-Fe-S-O	Refining	0.0	0.0	0.0	2.7	0.0	0.0	0.0	0.0	0.0	0.0
li Slag	Ni-Fe-Mg-Si-O	Refining/Smelter	0.0	0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-								-	-	ļ - I	1	
Malala	Fax 0 - N"	Minnetterre									10.5	
mainiess Steel	re>Cr-Ni	wiscellaneous	0.0	0.0	0.0	0.0	0.0	0.0	U.1	0.0	16.5	0.3
		1		l I			l I			1	1 I	
otal	1	1	100	100	100	100	100	100	100	100	100	100
		Chamical Analysis										
			1	2	3	4	5	6	7	8	9	10
		As Exchangeable	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
		As Carbonate	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
		As Reducible	61	< 5	13	7	< 5	23	7	< 5	15	28
		As Organic	73	10	31	16	13	133	7	7	16	21
		As Residual	6	< 5	< 5	< 5	< 5	18	< 5	< 5	< 5	< 5
		As Total Recoverable	120	18	43	20	12	150	12	< 5	24	52
			1	2	3	4	5	6	7	8	9	10
		Co Exchangeable	3.0	< 0.3	1.7	1.2	1.8	5.8	< 0.3	< 0.3	1.6	8.3
		Co Carbonate	0.4	< 0.3	0.8	< 0.3	< 0.3	1.8	0.6	< 0.3	< 0.3	< 0.3
		Co Reducible	9.5	8.2	16	16	11	27	9.9	6.6	15	8.3
		Co Organic	8.5	5.4	27	7.9	5.0	34	4.4	4.5	9.5	5.5
		Co Residual	11	8.1	13	11	5.2	23	6.1	5.5	10	12
		Co Total Recoverable	31	25	71	27	19	100	17	15	25	38
			1	2	3	4	5	6	7	8	9	10
		Cu Exchangeable	17	2.1	1.6	9.1	4.6	3.0	0.3	0.1	32	21
		Cu Carbonate	58	50	18	26	23	40	12	4.4	75	2.6
		Cu Reducible	200	170	42	430	160	93	74	42	340	190
		Cu Organic	550	420	550	540	200	1060	130	130	240	310
		Cu Residual	49	33	44	50	19	211	22	21	46	40
		Cu Total Recoverable	990	1000	830	1000	420	1500	270	220	780	850
			1	2	3	4	5	6	7	8	9	10
		Ni Exchangeable	130	34	59	140	130	200	14	14	110	280
		Ni Carbonate	23	32	42	19	22	86	21	13	13	2
		Ni Reducible	120	160	200	320	240	450	140	160	170	170
		Ni Organic	110	140	330	230	120	590	66	74	80	51
		Ni Residual	130	180	120	300	74	310	96	70	270	120
		Ni Total Recoverable	600	740	860	890	610	1500	320	360	560	840
			1	2	3	4	5	6	7	8	9	10
		Pb Exchangeable	1.4	0.8	0.7	1.1	1.3	0.6	0.6	0.6	6.4	1.0
		Pb Carbonate	4	8	2	4	6	1	8	11	17	2
		Pb Reducible	29	40	17	55	57	17	66	88	129	18
		Pb Organic	62	550	38	52	40	98	27	37	36	25
		Pb Residual	6.4	16	5.0	7.5	3.7	14	4.4	4.1	7.4	4.9
		Pb Total Recoverable	83	150	56	100	93	79	150	32	150	77

COC Pb

As

Cu

Ni

SGS Lakefield Research Limited P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2038 FAX: 705-652-6441

C. Wren and Associates - Sudbury

Attn : Chris Wren

64 Baker Street, Guelph, Ontario , N1H 4G1 Phone: (519) 766-1039, Fax:(519) 766-4360 Wednesday, October 19, 2005

Date Rec. :13 April 2005LR Report :CA10172-APR05Project :Sudbury Soils Phase 2

CERTIFICATE OF ANALYSIS

Final report

Analysis	1:	2:	3:	4:	5:	6:	7:	
·	Analysis	Analysis	Analysis	Analysis 20	04040724 200)404072520(04031715	
	Start Date	Start Time	Approval	Approval				
			Date	Time				
As Exchangeable [µg]	09-Jun-05	14:06	23-Jun-05	11:01	0.41	0.32	0.43	
As Carbonate [µg]	09 - Jun-05	14:06	23-Jun-05	11:01	< 0.25	< 0.25	< 0.25	
As Reducible [µg]	09-Jun-05	14:06	23-Jun-05	11:01	< 0.25	< 0.25	< 0.25	
As Organic [µg]	09-Jun-05	14:06	23-Jun-05	11:01	0.37	< 0.25	< 0.25	
As Residual [µg]	09-Jun-05	14:06	23-Jun-05	11:01	< 0.25	< 0.25	< 0.25	
Co Exchangeable [µg]	09-Jun-05	14:06	23-Jun-05	11:01	0.41	0.32	0.43	
Co Carbonate [µg]	09-Jun-05	14:06	23-Jun-05	11:01	0.05	0.06	0.05	
Co Reducible [µg]	09-Jun-05	14:06	23-Jun-05	11:01	0.06	< 0.02	0.04	
Co Organic [µg]	09-Jun-05	14:06	23-Jun-05	11:01	0.37	0.09	0.16	
Co Residual [µg]	09-Jun-05	14:06	23-Jun-05	11:01	0.11	< 0.02	0.04	
Cu Exchanfeable [µg]	09-Jun-05	14:06	23-Jun-05	11:01	3.06	3.11	2.50	
nalvsis	8:	9:	10:	11:	12:	13:	1	

As Exchangeable [µg]	0.32	0.32	1.28	0.48	< 0.25	< 0.25	< 0.25
As Carbonate [µg]	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
As Reducible [µg]	< 0.25	< 0.25	1.34	0.32	< 0.25	< 0.25	< 0.25
As Organic [µg]	< 0.25	0.45	4.66	0.71	< 0.25	< 0.25	< 0.25
As Residual [µg]	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Co Exchangeable [µg]	0.32	0.32	1.28	0.48	0.19	0.16	0.15
Co Carbonate [µg]	0.05	0.09	0.21	0.10	0.05	0.07	0.08
Co Reducible [µg]	0.02	0.06	1.34	0.32	< 0.02	< 0.02	0.21
Co Organic [µg]	0.06	0.45	4.66	0.71	0.11	0.04	< 0.02
Co Residual [µg]	0.03	0.26	1.34	0.28	0.09	0.04	0.40
Cu Exchanfeable [µg]	1.04	27.8	44.8	10.6	6.25	3.49	12.3

Data reported represents the sample submitted to SGS Lakefield Research. Reproduction of this analytical report in full or in part is prohibited without prior written approval.

LR Report : CA10172-APR05

Analysis	1:	2:	3:	4:	5:	6:	7:
	Analysis	Analysis	Analysis	Analysis 2	0040407242	0040407252	004031715
	Start Date	Start Time	Approval	Approval			
			Date	Time			
Cu Carbonate [µg]	09-Jun-05	14:06	23-Jun-05	11:01	0.51	0.58	0.69
Cu Reducible [µg]	09-Jun-05	14:06	23-Jun-05	11:01	0.76	0.27	0.43
Cu Organic [µg]	09-Jun-05	14:06	23-Jun-05	11:01	5.36	1.24	2.08
Cu Residual [µg]	09-Jun-05	14:06	23-Jun-05	11:01	1.32	0.60	0.57
Ni Exchangeable [µg]	09-Jun-05	14:06	23-Jun-05	11:01	3.21	0.69	1.20
Ni Carbonate [µg]	09-Jun-05	14:06	23-Jun-05	11:01	0.43	0.46	0.76
Ni Reducible [µg]	09-Jun-05	14:06	23-Jun-05	11:01	0.43	0.13	0.24
Ni Organic [µg]	09-Jun-05	14:06	23-Jun-05	11:01	5.04	1.15	1.57
Ni Residual [µg]	09-Jun-05	14:06	23-Jun-05	11:01	1.79	0.55	0.64
Pb Exchangeable [µg]	09-Jun-05	14:06	23-Jun-05	11:01	2.20	1.81	1.05
Pb Carbonate [µg]	09-Jun-05	14:06	23-Jun-05	11:01	0.47	0.25	0.24
Pb Reducible [µg]	09-Jun-05	14:06	23-Jun-05	11:01	0.44	0.14	0.17
Pb Organic [µg]	09-Jun-05	14:06	23-Jun-05	11:01	0.39	0.13	0.15
Pb Residual [µg]	09-Jun-05	14:06	23-Jun-05	11:01	0.11	0.09	0.09
Se Exchangeable [µg]	09-Jun-05	14:06	23-Jun-05	11:01	0.8	0.7	1.1
Se Carbonate [µg]	09-Jun-05	14:06	23-Jun-05	11:01	1.0	0.3	0.6
Se Reducible [µg]	09-Jun-05	14:06	23-Jun-05	11:01	0.8	0.7	0.6
Se Organic [µg]	09-Jun-05	14:06	23-Jun-05	11:01	1.9	1.2	0.9
Se Residual [µg]	09-Jun-05	14:06	23-Jun-05	11:01	0.5	1.0	0.9

 Analysis
 8:
 9:
 10:
 11:
 12:
 13:
 14:

 2004031716
 2004040810
 2004040812
 2004040815
 2004040816
 2004072106

Cu Carbonate [µg]	0.26	0.95	8.21	1.82	1.25	1.04	1.84
Cu Reducible [µg]	0.33	0.72	1.37	5.29	1.04	0.68	1.89
Cu Organic [µg]	1.18	5.29	97.5	18.9	4.57	3.04	1.83
Cu Residual [µg]	0.50	2.85	28.0	5.49	2.77	2.32	11.0
Ni Exchangeable [µg]	0.50	0.95	24.3	4.52	0.13	< 0.02	4.33
Ni Carbonate [µg]	0.93	0.40	3.59	0.96	0.13	0.20	1.12
Ni Reducible [µg]	0.11	0.17	4.09	1.81	0.02	0.05	1.61
Ni Organic [µg]	0.74	2.86	52.2	10.3	0.67	0.19	< 0.02
Ni Residual [µg]	0.25	2.66	23.6	4.35	1.24	0.71	11.1
Pb Exchangeable [µg]	0.77	2.25	10.8	8.21	0.71	0.46	1.69
Pb Carbonate [µg]	0.14	0.45	2.75	1.40	0.18	0.19	0.68
Pb Reducible [µg]	0.14	0.28	1.59	0.68	0.14	0.22	0.66
Pb Organic [µg]	0.16	0.55	3.66	0.96	0.38	0.21	0.01
Pb Residual [µg]	0.11	0.35	1.59	0.43	0.29	0.22	0.56
Se Exchangeable [µg]	0.5	0.5	0.6	0.3	0.3	0.5	0.4
Se Carbonate [µg]	0.3	0.9	< 0.2	0.6	< 0.2	< 0.2	0.6
Se Reducible [µg]	0.7	0.7	0.7	0.5	0.6	0.7	0.6
Se Organic [µg]	0.5	0.7	1.9	1.3	0.8	0.7	0.6
Se Residual [µg]	1.0	0.4	1.0	1.5	1.2	0.6	< 0.2

LR Report : CA10172-APR05

Kob Irwin B.Sc., C.Chem Technical Manager, Spectroscopy Environmental, Analytical Services

Copy: #1

Email: mgilbertson@cwren.com; cwren@cwren.com

C. Wren and Associates - Sudbury

Attn : Chris Wren

64 Baker Street, Guelph, Ontario , N1H 4G1 Phone: (519) 766-1039, Fax:(519) 766-4360 Wednesday, October 19, 2005

Date Rec. :13 April 2005LR Report :CA10171-APR05Project :Sudbury Soils Phase 2

CERTIFICATE OF ANALYSIS

Final Report

Analysis	Analy	sis Sta	1: art Ana	alvsis	2: start	Analy	3: /sis /	4 Analysi:	: s 502 5	5: 7824	6: 504 57822
	, ,	Da	te	,	Time	Appro C	oval A Date	pprova Tim	il Lab E e	Bottle	Lab Bottle
As Exchangeable [µg/g	ı] O	9-Jun-	05		14:36	22-Jur	n-05	09:29	9	< 5	< 5
Analysis	510 0 Whi	7: 5-1291 rlpack	512 5 Lab B	8: 7826 ottle	513 0 Whi	9: 5-1292 irlpack	515 5 Lab B	10: 7830 (ottle	521 05-1 Whirlp	11: 294 ack	12: 522 05-1295 Whirlpack
As Exchangeable [µg/g]	< 5		< 5		< 5		< 5		< 5	< 5
Analysis	523 Lab I	13: 523 57797 Lab Bottle		14: '817 ottle	529 05 Whir	15: -1297 Ipack	533 05 Whir	16: -1298 Ipack	534 578 Lab Bot	17: 34 5 tle	18: 541 05-1300 Whirlpack
As Exchangeable [µg/	[g]	< 5		< 5		< 5		< 5		< 5	< 5
Analysis	550 05- Whirl	19: 550 05-1301 Whirlpack		20: 552 05-1302 Whirlpack		21: 5-1303 irlpack	572 0: Whi	22: 5-1305 rlpack	582 05- Whirl	23: 1307 pack	24: 584 05-1308 Whirlpack
As Exchangeable [µg/g]		< 5		< 5		< 5		< 5		< 5	< 5
sis (L	25: 600 57810 Lab Bottle	601 (Wh	26: 05-1310 6 hirlpack		27 05-131 /hirlpac	7: 1 606 :k W	28 05-131 /hirlpac): 29 2 Blk k): 30: 1 Blk 2	31 SS-	l: 3/ 1 STD-Env Re 10171-
Exchangeable [µg/g]	< 5		< 5		<	5	<	5 <	5 < 5	<	5 <

LR Report : CA10171-APR05

Analysis	Analys	sis Sta Da [:]	1: rt Ana te	lysis	2: Start Time	Analy Appro D	3: vsis Ar oval Ap eate	4: nalysis proval Time	502 57 Lab B	5: 7824 ottle	6: 504 57822 Lab Bottle
As Carbonate [µg/g]	09	9-Jun-0)5		14:36	22-Jur	1-05	09:29		< 5	< 5
As Reducible [µg/g]	10)-Jun-()5		07:53	22-Jur	1-05	09:29		5	< 5
As Organic [µg/g]	09	9-Jun-0)5		12:30	22-Jur	1-05	09:29		17	18
As Residual [µg/g]	09	9-Jun-()5		12:30	22-Jur	1-05	09:29		< 5	< 5
Analysis	510 05 Whir	7: -1291 Ipack	512 57 Lab Bo	8: 7826 ottle	513 0 Wh	9: 5-1292 irlpack	515 578 Lab Bo	10: 330 5 ttle	21 05-12 Whirlpa	11: 94 : ick	12: 522 05-1295 Whirlpack
As Carbonate [µg/g]		< 5		< 5		< 5		< 5	•	< 5	< 5
As Reducible [µg/g]		36		6		21		5		10	9
As Organic [µg/g]		< 5		27		13		20	1	70	15
As Residual [µg/g]		< 5		< 5		< 5		< 5		7	< 5
Analysis	13: 523 57797 Lab Bottle		525 578 Lab Bo	14: 817 ttle	529 05 Whit	15: 5-1297 rlpack	533 05-1 Whirlp	16: 298 back l	1 534 5783 Lab Bott	7: 34 5 Ie	18: 41 05-1300 Whirlpack
As Carbonate [µg/g]	< 5		< 5			< 5		< 5	<	5	< 5
As Reducible [µg/g]		8	< 5			< 5		11	<	5	< 5
As Organic [µg/g]		5		22		22		12	8	32	15
As Residual [µg/g]		< 5		< 5		< 5		< 5	<	5	< 5
Analysis	550 05-1 Whirlp	19: 1301 back	552 05-1 Whirlp	20: 302 back	560 0 Wh	21: 5-1303 irlpack	572 05- Whirl	22: 1305 pack	582 05-′ Whirlp	23: 1307 back	24: 584 05-1308 Whirlpack
As Carbonate [µg/g]		< 5		< 5		< 5		< 5		< 5	< 5
\s Reducible [µg/g]		< 5		10		< 5		< 5		< 5	8
As Organic [μg/g]		6		13		< 5		10		8	39
As Residual [µg/g]		< 5		< 5		< 5		< 5		< 5	< 5
lysis	25: 600 57810 Lab Bottle	601 0 Wh	26: 95-1310 irlpack	602 W	2 05-131 hirlpac	7: 1 606 :k W	28: 05-1312 /hirlpack	29: Blk 1	: 30: Blk 2	31 SS-	: 32: 1 STD-Env Rep 10171-6
arbonate [µg/g]	< 5		< 5		<	5	< 5	< 5	5 < 5	<	5 < 5
Reducible [µg/g]	< 5		6		<	5	26	< 5	5 < 5	<	5 < 5
Drganic [µg/g]	14		26			6	130	< 5	5 < 5	3	1 19
Residual [µg/g]	< 5		< 5		<	5	9	< 5	5 < 5	<	5 < 5

LR Report : CA10171-APR05

Analysis	Analy	sis Sta Dat	1: rt Ana te	lysis	2: Start Time	Analy Appro	3: /sis A oval Ap)ate	4 nalysis oprova Time	: s 502 5 I Lab B e	5: 7824 lottle	6: 504 57822 Lab Bottle
Co Exchangeable [µg/	g] 0	9-Jun-C)5		14:36	22-Jur	1-05	09:29	9	4.8	2.1
Co Carbonate [µg/g]	0	9-Jun-C	95		14:36	22-Jur	1-05	09:29	9	< 0.3	0.4
Co Reducible [µg/g]	1	0-Jun-C	95		07:53	22-Jur	n-05	09:29	9	12	5.4
Co Organic [µg/g]	0	9-Jun-C)5		12:30	22-Jur	n-05	09:29	9	20	20
Analysis	510 08 Whi	7: 5-1291 rlpack	512 57 Lab Be	8: 7826 ottle	513 0 Whi	9: 5-1292 rlpack	515 57 Lab Bo	10: 830 <i>t</i>	521 05-12 Whirlpa	11: 294 ack	12: 522 05-1295 Whirlpack
Co Exchangeable [µg/	g]	4.9	·····	3.2		2.9		1.2		1.6	6.5
Co Carbonate [µg/g]		1.0		0.8		0.3		0.7		0.6	1.6
Co Reducible [µg/g]		23		21		11		11		18	41
Co Organic [µg/g]		3.3		70		10		30		250	90
Analysis	523 5 Lab E	13: 57797 Bottle	525 57 Lab Bo	14: 817 ttle	529 05 Whir	15: -1297 Ipack	533 05- Whirlp	16: 1298 back	1 534 578 Lab Bot	7: 34 5 tle	18: 541 05-1300 Whirlpack
Co Exchangeable [µg	/g]	1.9		3.2		5.5		1.6	2	2.5	11
Co Carbonate [µg/g]		1.1	0.9			1.7	•	< 0.3	C).8	< 0.3
Co Reducible [µg/g]		18	8.6			8.5		7.5		14	7.0
Co Organic [µg/g]		7.8	20			10		20	I	60	10
Analysis	550 05- Whirl	19: 1301 - back	552 05-^ Whirlp	20: 1302 back	560 05 Whi	21: 5-1303 rlpack	572 05 Whir	22: -1305 Ipack	582 05- Whirl	23: 1307 pack	24: 584 05-1308 Whirlpack
Co Exchangeable [µg/g]	•	< 0.3		1.0		0.4		3.1		0.4	1.8
Co Carbonate [µg/g]		< 0.3		0.4		< 0.3		< 0.3		< 0.3	0.4
Co Reducible [µg/g]		3.5		5.3		1.7		3.4		4.1	8.3
Co Organic [µg/g]		6.6		8.1		3.4		5.7		10	40
ysis	25: 600 57810 Lab Bottle	601 0 Whi	26: 5-1310 rlpack	602 W	27 05-131 hirlpac	: 1 606 k W	28: 05-1312 hirlpack	29 Blk ′	: 30: 1 Blk 2	31 SS-	l: 32 1 STD-Env Rep 10171-6
xchangeable [µg/g]	0.8		0.8		0.	5	2.9	< 0.3	3 < 0.3	< 0.	3 2.8
arbonate [µg/g]	< 0.3		< 0.3		< 0.3	3	1.0	< 0.3	3 < 0.3	1.	2 0.5
leducible [µg/g]	1.7		4.1		3.:	2	23	< 0.3	3 < 0.3	2	3 6.6
)rganic [µg/g]	7.6		9.4		10)	110	< 0.3	3 < 0.3	1	0 20

LR Report : CA10171-APR05

Analysis	Analy	1: 2: Analysis Start Analysis Start Date Time		2: is Start Time	Analy Appro	3: /sis Aı oval Ap)ate	4: nalysis oproval Time	502 5 Lab B	5: 7824 ottle	6: 504 57822 Lab Bottle
Co Residual [µg/g]	1.	4-Jun-C)5	08:45	22-Jur	1-05	09:29	1	16	6.3
Cu Exchangeable [µg/g	g] O:	9-Jun-C)5	14:36	22-Jur	n-05	09:29	1	30	43
Cu Carbonate [µg/g]	01	9-Jun-C)5	14:36	22-Jur	n-05	09:29	I	8.0	6.6
Cu Reducible [µg/g]	1	0-Jun-C)5	07:53	22-Jur	1 - 05	09:29	}	61	12
Analysis	510 05 Whit	7: 5-1291 rlpack	8 512 5782 Lab Bottl	8: 6 513 (e Wh	9:)5-1292 hirlpack	515 57 Lab Bo	10: 830 5 ottle	21 05-12 Whirlpa	11: 294 - J Nok	12: 522 05-1295 Whirlpack
Co Residual [µg/g]		9.7	1	7	6.4		18	1	50	69
Cu Exchangeable [µg/	9]	130	13	0	390		59	1	30	67
Cu Carbonate [µg/g]		37	2	1	50		9.9		21	6.2
Cu Reducible [µg/g]		160	1	9	160		63	1	10	42
Analysis	523 5 Lab E	13: 57797 Sottle	14: 525 57817 Lab Bottle	529 0 Wh	15: 5-1297 irlpack	533 05-′ Whirlp	16: 1298 back l	1 534 5783 Lab Bott	7: 34 5 le	18: 41 05-1300 Whirlpack
Co Residual [µg/g]		2.5	4.8	;	9.2		6.6		17	6.8
Cu Exchangeable [µg	/g]	29	96	i	730		130	4	45	170
Cu Carbonate [µg/g]		6.2	32	2	18		19	3	.5	25
Cu Reducible [µg/g]		18	120)	120		130	12	20	260
Analysis	-550 05 Whirl	19: 1301 back	20 552 05-130 Whirlpac): 2 560 (k Wł	21:)5-1303 hirlpack	572 05- Whirl	22: -1305 Ipack	582 05- ⁻ Whirl	23: 1307 back	24: 584 05-1308 Whirlpack
Co Residual [µg/g]		4.5	3.	9	4.9		2.8		4.9	9.4
Cu Exchangeable [µg/g]		35	13	0	64		94		11	43
Cu Carbonate [µg/g]		9.9	5	6	4.4		8.6		2.1	10
Cu Reducible [µg/g]		44	28	0	17		66		11	14
lysis	25: 600 57810 Lab Bottle	601 0 Wh	26: 5-1310 6(irlpack	2)2 05-13 Whirlpa	27: 11 606 ck W	28: 05-1312 /hirlpack	29: Blk 1	30: Blk 2	31 SS-′	: 32: 1 STD-Env Rep 10171-6
Residual [µg/g]	3.0		2.6		3.4	22	< 0.3	< 0.3	4.2	2 5.8
Exchangeable [µg/g]	32		44		51	99	5.7	′ < 0.1	1.9	9 58
Carbonate [µg/g]	6.7		5.3	6	6.6	21	< 0.1	< 0.1	20	6.8
Reducible [µg/g]	12		21		11	40	< 0.1	0.1	250) 15

LR Report : CA10171-APR05

5

Analysis	Analy	sis Sta Dat	1: rt Analy te	2: sis Start Time	Analy Appro	3: ysis Ar oval Ap Date	4: nalysis prova Time	: 502.57 I Lab Bo	5: 7824 ottle	6: 504 57822 Lab Bottle
Cu Organic [µg/g]	0!	9-Jun-0)5	12:30	22-Jur	า-05	09:29)	300	890
Cu Residual [µg/g]	1.	4-Jun-0)5	08:44	22-Jur	n-05	09:29)	11	36
Ni Exchangeable [µg/g]	0	9-Jun-0)5	14:37	22-Jur	า-05	09:29)	55	47
Ni Carbonate [µg/g]	0	9-Jun-0)5	14:37	22-Jur	า-05	09:29)	14	5
Analysis	510 05 Whit	7: 5-1291 ripack	512 578 Lab Bot	8: 26 513 tle W	9: 05-1292 hirlpack	515 57 Lab Bo	10: 830 5 ttle	521 05-12 Whirlpa	11: 94 Ick	12: 522 05-1295 Whirlpack
Cu Organic [µg/g]		150	27	00	790	2	000	33	00	820
Cu Residual [µg/g]		33	1	20	30		56		98	18
Ni Exchangeable [µg/g]]	230	1	40	160		49		81	140
Ni Carbonate [µg/g]	-	49		24	11		11		25	24
Analysis	523 5 Lab E	13: 57797 Sottle	14 525 5781 Lab Bott	4: 17 529 (le Wh	15:)5-1297 iirlpack	533 05-1 Whirlp	16: 1298 back	1 534 5783 Lab Bott	7: 34 5 Ie	18: 541 05-1300 Whirlpack
Cu Organic [µg/g]		420	150	0	340	*	860	250	00	420
Cu Residual [µg/g]		11	1	5	11		21	6	66	14
Ni Exchangeable [µg/g	9]	37	3	38	87		73	Ę	59	120
Ni Carbonate [µg/g]		12		9	5		18	1	14	22
Analysis	550 05- [.] Whirl	19: 1301 back	552 05-13 Whirlpa	20: 02 560 ck W	21: 05-1303 hirlpack	572 05- Whirl	22: -1305 pack	582 05-′ Whirlp	23: 1307 back	24: 584 05-1308 Whirlpack
Cu Organic [µg/g]		380	11	00	530		190		160	1300
Cu Residual [µg/g]		17		21	8.7		5.4		5.3	51
Vi Exchangeable [µg/g]		16		23	12		16		8	63
Ni Carbonate [µg/g]		5		14	< 1		5		2	7
lysis	25: 600 57810 Lab Bottle	601 0 Wh	26: 5-1310 (irlpack	602 05-13 Whirlpa	27: 311 606 ack W	28: 05-1312 /hirlpack	29 Bik 1	: 30: I Blk 2	31 SS-	l: 32: 1 STD-Env Rep 10171-6
Drganic [µg/g]	390		440	8	310	5070	< 0.1	1 < 0.1	86	0 940
Residual [µg/g]	11		8.6		18	380	< 0.1	i < 0.1	1	6 33
xchangeable [µg/g]	23		16		36	130	2	2 < 1	<	1 55
arbonate [µg/g]	3		3		5	72	< 1	1 < 1		7 5

LR Report : CA10171-APR05

Analysis	Analy	sis Sta	1: Irt Ana	lysis	2: Start	Analy	3: /sis Al	4 nalysis	: 502 5	5: 7824	6: 504 57822
	·	Da	te		Time	Appro D	oval Ap late	prova Time	I Lab B	ottle	Lab Bottle
Ni Reducible [µg/g]	1	0-Jun-(05		08:05	22-Jur	1-05	09:29)	75	60
Ni Organic [µg/g]	0	9-Jun-()5		12:30	22-Jur	ı-05	09:29)	280	480
Ni Residual [µg/g]	1	4-Jun-()5		08:44	22-Jur	i-05	09:29	9	54	140
Pb Exchangeable [µg/	g] 0	9-Jun-()5		14:38	22-Jur	1-05	09:29)	15	4.4
Analysis		7:		8:		9:		10:		11:	12:
	510 0 Whi	5-1291 rlpack	512 57 Lab Be	7826 ottle	513 0 Whi	5-1292 rlpack	515 57 Lab Bo	830 5 ttle	521 05-12 Whirlpa	294 ack	522 05-1295 Whirlpack
Ni Reducible [µg/g]		480		320		69		200	2	230	250
Ni Organic [µg/g]		110		1600		190		910	27	700	570
Ni Residual [µg/g]		310		460		94		330	E	520	210
Pb Exchangeable [µg/	g]	25		42		108		8.8		10	40
Analysis	523	13: 57797	525 57	14: 817	529 05	15: -1297	533 05-	16: 1298	1 534 578	7: 34 5	18: 641 05-1300
	Lab I	Bottle	Lab Bo	ttle	Whir	lpack	Whirl	back	Lab Bott	le	Whirlpack
Ni Reducible [µg/g]		160		87		68		100	22	20	85
Ni Organic [µg/g]		220	280			190		450	78	80	260
Ni Residual [µg/g]		66	56			70		100	1.	10	50
Pb Exchangeable [µg	/g]	2.4	10			73		46	7	. .7	25
Analysis		19:		20:		21:		22:		23:	24:
	550 05- Whirl	1301 pack	552 05-' Whirlp	1302 back	560 04 Whi	5-1303 rlpack	572 05- Whirl	1305 pack	-582 05 Whiri	1307 pack	584 05-1308 Whirlpack
Ni Reducible [µg/g]		34		77		18		23		22	94
Ni Organic [µg/g]		140		160		68		62		79	750
Ni Residual [µg/g]		90		57		87		22		28	190
Pb Exchangeable [µg/g]		9.8		126		21		49		2.9	8.2
alysis	25:		26:		27	':	28:	29	: 30:	31	: 3:
	600 57810 Lab Bottle	601 0 Wh)5-1310 irlpack	602 W	05-131 hirlpac	1606 kW	05-1312 hirlpack	Blk ′	1 Blk 2	SS-	1 STD-Env Re 10171-
Reducible [µg/g]	28		46		6	3	490	< '	1 < 1	18	0 7
Organic (µg/g)	130		190		37	0	3800	< '	1 < 1	10	0 51
Residual [µg/g]	54		29		9	6	620	< '	1 < 1		5 14
Exchangeable [µg/g]	16		11		5.	0	13	< 0.7	7 0.8	< 0.	7 6.

LR Report : CA10171-APR05

Analysis	Analys	sis Sta Da	1: irt Analy te	2 sis Staı/ Tim	t Ana Appi	3: Iysis roval A Date	4 Analysi \pprova Tim	k: s 502 5 II Lab B e	5: 7824 ottle	6: 504 57822 Lab Bottle
Pb Carbonate [µg/g]	09	-Jun-()5	14:3	8 22-Ji	in-05	09:2	9	31	10
Pb Reducible [µg/g]	1()-Jun-()5	08:0	6 22-Ji	un-05	09:29	9	42	38
Pb Organic [µg/g]	90)-Jun-()5	12:3	0 22-Ji	ın-05	09:29	9	26	100
Pb Residual [µg/g]	14	1-Jun-()5	08:4	4 22-Ju	un-05	09:2	9	2.4	7.0
Analysis	510 05 Whir	7: -1291 Ipack	512 578 Lab Bot	8: 326 513 ttle V	9 3 05-129 /hirlpacl	: 2 515 5 k Lab E	10: 7830 Sottle	521 05-12 Whirlpa	11: 294 nck	12: 522 05-1295 Whirlpack
Pb Carbonate [µg/g]		32	(30	130))	5.3		71	8.7
Pb Reducible [µg/g]		150	18	300	350	C	47	1	40	49
Pb Organic [µg/g]		5.9	14	100	170	C	82	5	540	41
Pb Residual [µg/g]		1.8		63	9.	5	8.2		26	2.2
Analysis	523 5 Lab B	13: 14: 15: 523 57797 525 57817 529 05-1297 533 05-12 Lab Bottle Lab Bottle Whirlpack Whirlpa		16: 5-1298 ripack	1 534 578 Lab Bott	7: 34 5 tle	18: i41 05-1300 Whirlpack			
Pb Carbonate [µg/g]		9.2		35	57		290	1	.5	25
Pb Reducible [µg/g]		74	3	80	48		200	12	20	42
Pb Organic [µg/g]		14	3	30	32		84	20	00	15
Pb Residual [µg/g]		1.0	g	.4	< 0.7		3.9	9	0.0	1.8
Analysis	550 05-1 Whirlp	19: 301 back	552 05-13 Whirlpa	20: 302 560 ack V	21) 05-130 /hirlpac	: 3 5720 k Wh	22: 5-1305 irlpack	582 05- Whirl	23: 1307 pack	24: 584 05-1308 Whirlpack
Pb Carbonate [µg/g]		6.5		100	6.	5	10		1.6	44
Pb Reducible [µg/g]		28	4	40	2	8	25		16	200
Pb Organic [µg/g]		24		150	23	3	23		18	250
Pb Residual [µg/g]		2.0		6.7	1.	5	3.0		11	12
lysis	25: 26: 27: 600 57810 601 05-1310 602 05-1311 606 05- Lab Bottle Whirlpack Whirlpack Whirl		2: 96 05-131 Whirlpac	8: 29 2 Blk :k	9: 30: 1 Blk 2	31 SS-	l: 32: 1 STD-Env Rep 10171-6			
Carbonate [µg/g]	3.1		8.3		25	2	20 < 0.	7 < 0.7	5.	9 12
Reducible [µg/g]	31		65		67	ę	97 < 0.	7 < 0.7	16	0 47
Drganic [µg/g]	19		55		69	11	0 < 0.	7 < 0.7	14	0 110
Residual [µg/g]	2.9		3.2		2.3	9	.9 < 0,	7 < 0.7	8.	1 6.8

Analysis	Analys	1: Analysis Start A Date		2: is Start Time	Analy Appro	3: /sis Ar oval Ap)ate	4: alysis proval Time	502 57 Lab Bo	5: 7824 ottle	6: 504 57822 Lab Bottle
Se Exchangeable [µg/g] 09	9-Jun-0	5	14:38	22-Jur	n-05	09:29		< 5	< 5
Se Carbonate [µg/g]	09)-Jun-0	5	14:38	22-Jur	ı-05	09:29		< 5	< 5
Se Reducible [µg/g]	1()-Jun-0	5	07:54	22-Jur	n-05	09:29		7	< 5
Se Organic [µg/g]	0	9-Jun-0	5	12:30	22-Jur	n-05	09:29		< 5	< 5
Analysis	510 05 Whit	7: -1291 Ipack	8 512 5782 Lab Bottl	: 6 513 (e Wh	9:)5-1292 hirlpack	515 578 Lab Bo	10: 330 5: ttle	1 21 05-12 Whirlpa	l1: 94 ck	12: 522 05-1295 Whirlpack
Se Exchangeable [µg/g	ð]	< 5	< :	5	< 5		< 5		< 5	< 5
Se Carbonate [µg/g]		< 5	< :	5	< 5		< 5	<	< 5	< 5
Se Reducible [µg/g]		< 5	< :	5	8		< 5		6	< 5
Se Organic [µg/g]		< 5		9	< 5		< 5		5	< 5
Analysis	523 5 Lab B	13: 7797 Sottle	14: 525 57817 Lab Bottle	529 0 Whi	15: 5-1297 irlpack	533 05-1 Whirlp	16: 298 Jack L	1 534 5783 .ab Bott	7: 34 5 Ie	18: 641 05-1300 Whirlpack
Se Exchangeable [µg	/g]	< 5	< 5		< 5		< 5	<	5	< 5
Se Carbonate [µg/g]		< 5	< 5		< 5		< 5	<	5	< 5
Se Reducible [µg/g]		< 5	< 5		33		5	<	5	20
Se Organic [µg/g]		< 5	< 5		< 5		< 5	<	5	< 5
Analysis	550 05-1 Whirlp	19: 301 { back	20 552 05-130 Whirlpac	: 2 560 (k Wł	21: 05-1303 hirlpack	572 05- Whirl	22: 1305 pack	582 05-1 Whirlp	23: 1307 back	24: 584 05-1308 Whirlpack
Se Exchangeable [µg/g]	····· ·	< 5	<	5	< 5		< 5		< 5	< 5
Se Carbonate [µg/g]		< 5	< :	5	< 5		< 5		< 5	< 5
Se Reducible [µg/g]		< 5	I	6	< 5		6		< 5	< 5
Se Organic [µg/g]		< 5	<	5	< 5		< 5		< 5	8
lysis	25: 600 57810 Lab Bottle	601 0 Whi	26: 5-1310 60 irlpack '	2 2 05-13 Whirlpa	27: 11 606 ck W	28: 05-1312 /hirlpack	29: Blk 1	30: Blk 2	31 SS-	:: 32: 1 STD-Env Rep 10171-6
xchangeable [µg/g]	< 5		< 5	<	< 5	< 5	< 5	< 5	<	5 < 5
arbonate [µg/g]	< 5		< 5	<	\$ 5	< 5	< 5	< 5	<	5 < 5
Reducible [µg/g]	< 5		< 5	~	< 5	< 5	< 5	< 5	<	5 < 5
)rganic [µg/g]	< 5		< 5	<	< 5		< 5	< 5	< :	5 6

LR Report : CA10171-APR05

Analysis	Analysis Si D		1: Start Ana Date		2: Start Time	Analy Appro	3: /sis A oval A /ate	4 Analysis pprova Time	: s 502 5 I Lab B e	5: 7824 ottle	6: 504 57822 Lab Bottle
Se Residual [µg/g]	14	I-Jun-()5		08:44	22-Jur	1-05	09:29	9	< 5	< 5
Analysis	510 05 Whir	7: -1291 Ipack	512 57 Lab Bo	8: 7826 ottle	513 0 Whi	9: 5-1292 rlpack	515 5 Lab B	10: 7830 - ottle	521 05-12 Whirlpa	11: 294 ack	12: 522 05-1295 Whirlpack
Se Residual [µg/g]		< 5		< 5		< 5		< 5	,	< 5	< 5
Analysis	523 5 Lab B	13: 7797 ottle	525 57 Lab Bo	14: 817 ttle	529 05 Whir	15: -1297 Ipack	533 05 Whir	16: -1298 Ipack	1 534 578 Lab Bott	7: 34 5 :le	18: 541 05-1300 Whirlpack
Se Residual [µg/g]		< 5		< 5		< 5		< 5	<	5	9
Analysis	550 05-1 Whirlp	19: 550 05-1301 (Whirlpack		20: 552 05-1302 Whirlpack		21: 5-1303 irlpack	572 0(Whi	22: 5-1305 rlpack	582 05- Whirl	23: 1307 pack	24: 584 05-1308 Whirlpack
Se Residual [µg/g]		< 5		< 5		< 5		< 5		< 5	< 5
nlysis	25: 600 57810 Lab Bottle	601 0 Wh	26: 05-1310 iirlpack	602 W	21 05-131 /hirlpac	7: 1 606 :k W	28 05-131 /hirlpac	i: 29 2 Blk k): 30: 1 Blk 2	31 SS-	1: 3: 1 STD-Env Re 10171
Residual [µg/g]	< 5		< 5		<	5	<	5 <	5 < 5	<	5 <

Kob Irwin B.Sc., C.Chem Technical Manager, Spectroscopy Environmental, Analytical Services

Email: mgilbertson@cwren.com; cwren@cwren.com

					11: 09ss-0.5cm-sp lit SG Apr8/05	< 5 م	د ۲		۸ 5	< 5	< 5	< 0.3	< 0.3	4.4	3.5	5.2	8.7	4.2	37	120	150	12	
10	005 APR05 oils Phase 2				10: 507ss-0.5cm-sp5 lit SG Apr8/05	< 5	< 5 <	13	31	د ۲	43	1.7	0.8	16	27	13	71	1.6	18	42	550	44	
er 19, 2005	13 April 20 CA10170- Sudbury S	#			9: 506ss-0.5cm-sp lit SG Apr8/05	< 5	< 5	9	14	< 5	13	1.8	0.4	13	<u>د</u>	16	22	19	200	630	920	71	
day, Octob	ate Rec. : R. Ref. : oject :	opy to :	(0)		8: 05ss-0.5cm-sp ⁴ lit SG Apr8/05	< 5 <	< 5	9	ø	v v	თ	0.6	< 0.3	6.9	4.6	8.5	16	3.1	48	150	520	37	
Wednes	320	ŏ	ALYSIS		7: 04ss-0.5cm-sp5 iit SG Apr8/05	< 5	റ റ	ى ۷	10	ភូ	18	< 0.3	< 0.3	8.2	5.4	8.1	25	2.1	50	170	420	33	
			JF AN	eport	6:)2ss-0.5cm-sp5i it SG Apr8/05	< 5 <	× 5	61	73	9	120	3.0	0.4	9.5	8.5	11	31	17	58	200	550	49	
			CATE 0	Final Re	5: 501ss-0.5cm-sp 50 lit SG Apr8/05	< 5	< 5 <	12	23	< 5	34	3.0	0.7	12	÷.	12	30	4.9	26	76	300	36	
			RTIFI		4: Analysis Approval Time	11:20	11:20	11:20	11:20	11:20	08:39	11:20	11:20	11:20	11:20	11:20	08:39	11:20	11:20	11:20	11:20	11:20	
•			CEI		3: Analysis Approval Date	27-Jun-05	27-Jun-05	27-Jun-05	27-Jun-05	27-Jun-05	26-Apr-05	27-Jun-05	27-Jun-05	27-Jun-05	27-Jun-05	27-Jun-05	26-Apr-05	27-Jun-05	27-Jun-05	27-Jun-05	27-Jun-05	27-Jun-05	
- Sudbury					2: Analysis Start Time	14:00	14:00	14:00	14:00	14:00	14:00	14:00	14:00	14:00	14:00	14:00	14:00	14:00	14:00	14:00	14:00	14:00	
sociates	l 4G1	39			1: Analysis Start Date	25-Apr-05	25-Apr-05	25-Apr-05	25-Apr-05	25-Apr-05	25-Apr-05	25-Apr-05	25-Apr-05	25-Apr-05	25-Apr-05	25-Apr-05	25-Apr-05	25-Apr-05	25-Apr-05	25-Apr-05	25-Apr-05	25-Apr-05	
C. Wren and Ass Attn : Chris Wren	64 Baker Street Guelph, Ontario, N1F	Phone: (519) 766-10(Fax:(519) 766-4360			Analysis	As Exchangeable [µg/g]	As Carbonate [µg/g]	As Reducible [µg/g]	As Organic [µg/g]	As Residual [µg/g]	As Total Recoverable [µg/g]	Co Exchangeable [µg/g]	Co Carbonate [µg/g]	Co Reducible [µg/g]	Co Organic [µg/g]	Co Residual [µg/g]	Co Total Recoverable [µg/g]	Cu Exchangeable [µg/g]	Cu Carbonate [Jug/g]	Cu Reducible [µg/g]	E Cu Organic [µg/g]	Cu Residual [µg/g]	

SGS Lakefield Research Limited P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2038 FAX: 705-652-6441

Lakefield - Ontario - KOL 2HO Phone: 705-652-2038 FAX: 705-652-6441 P.O. Box 4300 - 185 Concession St. SGS Lakefield Research Limited

CA10170-APR05 LR Report :

Analysis	÷	ы	3: S	4:	. .	÷	7:	ö:	.6 6	10:	11:
	Analysis Start Date	Analysis Start Time	Analysis Approval Date	Analysis Approval Time	501ss-0.5cm-sp{ lit SG Apr8/05	502ss-0.5cm-sp lit SG Apr8/05	504ss-0.5cm-sp. lit SG Apr8/05	505ss-0.5cm-sp ¹ lit SG Apr8/05	506ss-0.5cm-sp lit SG Apr8/05	507ss-0.5cm-sp lit SG Apr8/05	509ss-0.5cm-sp lit SG Apr8/05
Cu Total Recoverable [µg/g]	25-Apr-05	14:00	26-Apr-05	08:39	390	066	1000	850	1400	830	340
Ni Exchangeable [µg/g]	25-Apr-05	14:00	27-Jun-05	11:20	120	130	34	52	180	59	50
Ni Carbonate [µg/g]	25-Apr-05	14:00	27-Jun-05	11:20	30	23	32	26	52	42	18
Ni Reducible [µg/g]	25-Apr-05	14:00	27-Jun-05	11:20	150	120	160	100	240	200	110
Ni Organic [µg/g]	25-Apr-05	14:00	27-Jun-05	11:20	110	110	140	110	260	330	61
Ni Residual [µg/g]	25-Apr-05	14:00	27-Jun-05	11:20	120	130	180	210	420	120	67
Ni Total Recoverable [ug/g]	25-Apr-05	14:00	26-Apr-05	08:39	470	600	740	480	680	860	280
Pb Exchangeable [µg/g]	25-Apr-05	14:00	27-Jun-05	11:20	0.8	1.4	0.8	0.7	< 0.7	0.7	0.8
Pb Carbonate [µg/g]	25-Apr-05	14:00	27-Jun-05	11:20	4	4	ω	Q	4	7	~
Pb Reducible [µg/g]	25-Apr-05	14:00	27-Jun-05	11:20	10	29	40	27	24	17	5.8
Pb Organic [µg/g]	25-Apr-05	14:00	27-Jun-05	11:20	18	62	550	48	41	38	ъ
Pb Residual [µg/g]	25-Apr-05	14:00	27-Jun-05	11:20	3.3	6.4	16	6.8	7.7	5.0	4.0
Pb Total Recoverable [µg/g]	25-Apr-05	14:00	26-Apr-05	08:39	28	83	150	88	56	56	
Se Exchangeable [µg/g]	25-Apr-05	14:00	27-Jun-05	11:20	۸ 5	ю V	ъ v	ю V	 	< ភ	ເດ V
Se Carbonate [µg/g]	25-Apr-05	14:00	27-Jun-05	11:20	۸ ت	ю V	ъ v	۸ ت	< 5	< 5	< 5
Se Reducible [µg/g]	25-Apr-05	14:00	27-Jun-05	11:20	۸ 5	ى ۷	ດ v	< 5	د 5	< ភូ	< 5
Se Organic [µg/g]	25-Apr-05	14:00	27-Jun-05	11:20	5	ю v	ທ v	< 5	7	د ۲	د ۲
Se Residual [µg/g]	25-Apr-05	14:00	27-Jun-05	11:20	< 5 <	د ح	ۍ ۲	د د د	ہ م	< 5 < 5	د ۲

ა v

ភ ខ

აი v

ភ v

ហ V

ഗ V

ى م

08:39

26-Apr-05

14:00

25-Apr-05

Se Total Recoverable [µg/g]

Environmental, Analytical Services Technical Manager, Spectroscopy Rob Irwin B.Sc., C.Chem

SGS Lakefield Research Limited	P.O. Box 4300 - 185 Concession St.	Lakefield - Ontario - KOL 2HO	Phone: 705-652-2038 FAX: 705-652-6441	

C. Wren and Associates - Sudbury Attn : Chris Wren

64 Baker Street Guelph, Ontario, N1H 4G1

Phone: (519) 766-1039 Fax:(519) 766-4360

Wednesday, October 19, 2005

Copy to :

CERTIFICATE OF ANALYSIS

Final Report

21:

20:

19:

18:

17:

16:

15:

14:

133

3

Analysis

	510ss-0.5cm-sp lit SG Apr8/05	511ss-0.5cm-sp lit SG Apr8/05	512ss-0.5cm-sp. lit SG Apr8/05	513ss-0.5cm-sp lit SG Apr8/05	514ss-0.5cm-sp lit SG Apr8/05	515ss-0.5cm-sp lit SG Apr8/05	516ss-0.5cm-sp lit SG Apr8/05	517ss-0.5cm-sr lit SG Apr8/05	518ss-0.5cm-sp lit SG Apr8/05	519ss-0.5cm-sp lit SG Apr8/05
As Exchangeable [µg/g]	< 5 <	< 5	< 5	< 5 <	< 5	< 5	< 5	< 5	< 5	< 5
As Carbonate [µg/g]	с V	۸ ت	۸ 5	ក ក	< 5 <	د م	< 5 <	< 5	ى v	< 5
As Reducible [µg/g]	< 5 <	< 5 <	7	ې ۲	17	د ۲	< 5 5	15	7	9
As Organic [Jug/g]	7	ω	16	< 5 <	37	د ۲	13	28	10	22
As Residual [µg/g]	م م		< ភ	ល v	 ស 	< ភ	ہ ع	< 5	< 5	< 5
As Total Recoverable [µg/g]	11	د ۲	20	ю V	57	د م	12	45	16	26
Co Exchangeable [µg/g]	< 0.3	< 0.3	1.2	0.6	2.9	< 0.3	1.8	< 0.3	< 0.3	< 0.3
Co Carbonate [µg/g]	< 0.3	< 0.3	< 0.3	< 0.3	0.8	< 0.3	< 0.3	0.3	< 0.3	< 0.3
Co Reducible [µg/g]	6.0	4.4	16	3.6	25	2.2	1	10	6.8	9.5
Co Organic [µg/g]	3.8	4.8	7.9	4.5	42	3.3	5.0	7.7	5.5	9.6
Co Residual [Jg/g]	5.4	5.5	, .	3.6	14	3.7	5.2	5.6	5.4	5.8
Co Total Recoverable [µg/g]	12	9.2	27	6.5	100	5.5	19	18	15	23
Cu Exchangeable [µg/g]	2.1	3.6	<u>9</u> .1	4.9	0.8	< 0.1	4.6	0.6	1.5	0.2
Cu Carbonate [µg/g]	28	24	26	0.3	4.7	0.4	23	10	,	1.5
Cu Reducible [µg/g]	68	85	430	12	54	5.8	160	52	56	25
Cu Organic [µg/g]	240	130	540	25	630	23	200	150	160	150
Cu Residual [µg/g]	21	17	50	2.9	46	2.3	19	22	15	10

Analysis

LR Report : CA10170-APR05

510ss-0.5cm-sp511ss-0.5cm-sp512ss-0.5cm-sp513ss-0.5cm-sp514ss-0.5cm-sp515ss-0.5cm-sp517ss-0.5cm-sp517ss-0.5cm-sp518ss-0.5cm-sp519ss-0.5cm-sp518s 2 20 ,9; 8 17: 16: 15: 14: <u>ң</u> i 2 2

Cu Total Recoverable [µg/g]	440	220	1000	42	940	31	420	290	280	21
Ni Exchangeable [µg/g]	42	25	140	7	84	-	130	1.	41	o
Ni Carbonate [Jg/g]	29	9	19	ý.	34	Ŷ	22	19	19	5
Ni Reducible [µg/g]	130	45	320	10	310	17	240	140	120	06
Ni Organic [µg/g]	82	45	230	20	480	14	120	100	110	100
Ni Residual [µg/g]	96	74	300	17	130	12	74	52	62	39
Ni Total Recoverable [µg/g]	360	140	890	42	1300	38	610	330	380	240
Pb Exchangeable [µg/g]	0.7	1.0	۲. ۲.	3.9	< 0.7	0.8	1.3	< 0.7	0.7	~ 0. ~
Pb Carbonate [µg/g]	7	ъ	4	ო	÷	2	9	2	2	7
Pb Reducible [µg/g]	7.1	27	55	21	14	7.9	57	16	11	8.0
Pb Organic [µg/g]	თ	17	52	13	33	S	40	14	19	14
Pb Residual [µg/g]	4.0	3.6	7.5	4.6	4.2	3.4	3.7	3.5	3.8	5.3
Pb Total Recoverable [µg/g]	17	31	100	41	55	*~~	93	40	30	19
Se Exchangeable [µg/g]	 5 	۸ ۍ	< 5 <	< 5 <	< 5 <	< 5	< 5	ی ۲	< 5	υ V
Se Carbonate [µg/g]	5	ក ភ	< 5 <	د ئ	< 5	< 5	< 5	< 5	< 5	ю V
Se Reducible [µg/g]	< 5 <	< 5	< 5	< 5 <	< 5	< 5 <	< 5	< 5 <	< 5 <	ເດ V
Se Organic [Jug/g]	< 5	< 5	د ح	< 5 <	< 5	< 5	< 5 <	د 5	 5 	ມ V
Se Residual [µg/g]	۸ 5	< 5	< 5	с У	< 5	5	< 5 <	د ۲	د د	ۍ ۷
Se Total Recoverable [µg/g]	< 5 5	د ۲	د ۲	د ک	< 5	< 5 <	5	< 5	< 5	к V

Environmental, Analytical Services Technical Manager, Spectroscopy Rob Irwin B.Sc., C.Chem No A

SGS Lakefield Research Limited	
P.O. Box 4300 ~ 185 Concession St.	
Lakefield - Ontario - KOL, 2HO	
Phone: 705-652-2038 FAX: 705-652-6441	
C. Wren and Associates - Sudbury	
Attn : Chris Wren	

64 Baker Street

64 Baker Street Guelph, Ontario, N1H 4G1

Phone: (519) 766-1039 Fax:(519) 766-4360

Wednesday, October 19, 2005

Date Rec. :	13 April 2005
L.R. Ref. :	CA10170-APR05
Project :	Sudbury Soils Phase 2
Copy to :	#1

CERTIFICATE OF ANALYSIS

Final Report

31:

30:

29:

28

27:

26:

25:

24:

23:

22

Analysis

ц) 								
0	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
< 5	ہ م	< ភ	ې ۷	د ۲	ດ V	د ۲	د ۲	с V
7	23	31	ې ۲	ې ۲	ю V	ل	< 5	ა ა
12	133	83	9	7	ក ភូ	15	< 5 <	ۍ ۷
< 5 <	18	Q	ក ភ	ក ក	ა v	د د	ۍ ۲	ላ ለ
16	150	110	7	10	د ۍ د	33	9	10
1.3	5.8	4.5	< 0.3	< 0.3	< 0.3	0.9	0.3	4.1
< 0.3	1.8	1.8	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
÷	27	25	4.2	4.0	2.2	14	1.6	5.4
6.4	34	43	3.3	3.7	2.6	14	2.5	3.2
9.2	23	24	3.4	4.8	3.2	15	3.0	5.1
24	100	56	12	<u>1</u>	5.7	50	6.2	12
13	3.0	1.5	< 0.1	0.3	< 0.1	1.0	< 0.1	12
44	40	16	2.3	7.6	< 0.1	14	< 0.1	31
220	93	65	14	36	3.3	61	3.6	130
580	1060	540	110	110	30	310	34	170
39	211	59	9.3	5	2.7	45	4,1	15
	<pre></pre>	 < 5 16 15 1.3 5.8 0.3 5.8 6.4 3.4 9.2 2.7 9.2 2.4 1.8 4.4 3.0 13 3.0 13 3.0 13 24 100 24 100 23 23 580 1060 39 211 	 <5 18 6 16 150 110 1.3 5.8 4.5 <0.3 1.8 1.8 4.5 <0.3 1.8 1.8 <1.1 27 2.5 6.4 34 43 9.2 23 2.4 9.2 23 2.4 1.8 1.8 1.8 1.8 1.8 1.6 56 100 56 580 1060 540 39 211 59 	<5	<55 18 6 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <53 <50.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	<55 18 6 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <56 <53 <50.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.1 <0.3 <0.1 <0.3 <0.1 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 $<$	< 55 18 6 < 55 < 55 < 55 < 55 < 55 < 55 < 55 < 55 < 55 < 55 < 55 < 55 < 55 < 55 < 55 < 55 < 55 < 55 < 55 < 55 < 55 < 55 < 55 < 55 < 55 < 55 < 50 < 33 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3 < 0.3	<55 18 6 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <55 <50.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 </td

LR Report : CA10170-APR05

Analysis	22:	23:	24:	25:	26:	27:	28:	29:	30:	31:
	520ss-0.5cm-sp	521ss-0.5cm-sp	522ss-0.5cm-sp	523ss-0.5cm-sp.	524ss-0.5cm-sp	525ss-0.5cm-sp	526ss-0.5cm-sp	528ss-0.5cm-sp	529ss-0.5cm-sp	530ss-0.5cm-sj
	lit SG Apr8/05	lit SG Apr8/05	lit SG Apr8/05	lit SG Apr8/05	lit SG Apr8/05	lit SG Apr8/05	lit SG Apr8/05	lit SG Apr8/05	lit SG Apr8/05	lit SG Apr8/05
Cu Total Recoverable [µg/g]	98	1100	1500	740	180	180	45	610	51	530

Cu Total Recoverable [µg/g]	98	1100	1500	740	180	180	45	610	51	530
Ni Exchangeable [µg/g]	12	130	200	190	~~	œ	4	51		93
Ni Carbonate [µg/g]	2	22	86	108	11	ത	2	15	7	ഗ
Ni Reducible [µg/g]	30	160	450	510	65	64	25	110	14	84
Ni Organic [µg/g]	40	150	590	460	62	58	21	150	15	76
Ni Residual [µg/g]	31	220	310	140	38	51	14	110	22	91
Ni Total Recoverable [µg/g]	92	700	1500	1200	210	190	65	560	73	410
Pb Exchangeable [µg/g]	0.9	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7
Pb Carbonate [µg/g]	7	ო	~~	Ţ	←	-	< 0.7	*	~	2
Pb Reducible [µg/g]	9.6	15	17	21	7.6	8.8	4.7	15	4.7	16
Pb Organic [µg/g]	14	35	98	53	15	13	7	21	9	15
Pb Residual [µg/g]	3.6	6.1	14	5.4	2.5	4.4	3.5	2.6	< 0.7	4.5
Pb Total Recoverable [µg/g]	23	59	79	76	26	23	13	54	12	38
Se Exchangeable [µg/g]	د ت	< 5 <	د د	ې ۲	ក ក	ഹ V	د د	< 5	ን 2	د ۲
Se Carbonate [µg/g]	< 5	< 5	ъ v	ю V	5	ດ V	د ۲	< 5 <	۸ 5	5
Se Reducible [µg/g]	5	< 5	< <	ю v	ក ក	5	ιΩ V	< 5 2	ہ م	ې م
Se Organic [µg/g]	< 5	9	ក ភ	ю V	د ۲	د م	ى v	د م		< ح
Se Residual [µg/g]	< 5 <		ې ۲	< £ <		 <!--</td--><td>< 5 <</td><td>< 5 <</td><td>۸ گ</td><td>رب م</td>	< 5 <	< 5 <	۸ گ	رب م
Se Total Recoverable [µg/g]	< 5	< 5 <	< 5	< 5	5	< 5 <	5	< 5 <	< ប	< ភ

Environmental, Analytical Services Technical Manager, Spectroscopy Kob Irwin B.Sc., C.Chem

C. Wren and Asso	ociates - Su	idbury				Wedn	esday, Octc	ber 19, 20()5	
64 Baker Street							Date Rec. : LR. Ref. :	13 April 2 CA1017 0	2005)-APR05	
Guelph, Ontario, N1H	4G1						Project :	Sudbury	Soils Phase 2	
Phone: (519) 766-1039 Fax:(519) 766-4360	•						Copy to :	#		
		0	CERTIFI	CATE	OF AN	NALYS	S			
				Final	Report					
Analysis	32: 531ss-0.5cm-sp£	33: 332ss-0.5cm-sp	34: 533ss-0.5cm-sp5	34ss-0.5cm-sp5	36: #1ss-0.5cm-sp5	37: 342ss-0.5cm-sp	38: 546ss-0.5cm-sp	39: 547ss-0.5cm-sp "* 50 Aurolof	40: 550ss-0.5cm-sp1	41: 551ss-0.5cm-sp 114 CC A0105
	lit SG Apr8/05	lit SG Apr8/05	lit SG Apr8/05	lit SG Apr8/05	lit SG Apr8/05	lit SG Apr8/05	lit SG Apr8/05	lit SG Apr8/05	eurs 5G Apr8/05	lit SG Apr8/05
As Exchangeable [µg/g]	ى ۷	ى م	ې ۲	v م	v ک	ې ۷	v v	ۍ ۷	ນ v	ى v
As Carbonate [µg/g]	ې ۷	ې ۷	د ک	ທ V	ې ۲	ې ۷	ى v	ى v	ې ۷	ທ V
As Reducible [µg/g]	۸ 5	45	9	35	ۍ ۷	ი v	ى v	۷ ۲	ក ភ	ю V
As Organic [µg/g]	< 5	134	7	70	د ت	< 5	< 5	< 5	د ۲	< 5 <
As Residual [µg/g]	ក	<u>۲۰۰</u>	م م	ក ភូ	ເ v	ۍ ۷	< ប	۸ ស	< 5	< 5
As Total Recoverable [µg/g]	< ک د 5	210	16	120	< 5 م	ى v	< ភ	< 5 <	د د	< ភ
Co Exchangeable [µg/g]	< 0.3	4.3	0.3	1.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Co Carbonate [µg/g]	< 0.3	0.4	< 0.3	0.6	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Co Reducible [µg/g]	2.3	19	9.4	16	1.8	0.5	1.1	2.2	3.4	1.6
Co Organic [µg/g]	2.2	23	4.7	18	2.7	1.8	2.1	3.4	3.6	2.2
Co Residual [µg/g]	3.4	15	9.3	12	3.4	2.5	3.3	3.7	3.6	2.5
Co Total Recoverable [µg/g]	5.2	70	23	44	4.8	2.0	3.4	5.6	6.2	6.1
Cu Exchangeable [µg/g]	< 0.1	3.6	4. S	1.3	< 0.1	< 0.1	< 0.1	< 0.1	0.3	< 0.1
Cu Carbonate [Jug/g]	0.9	28	42	24	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Cu Reducible [µg/g]	11	150	260	76	4.9	1.5	2.2	2.9	7.6	2.6
Cu Organic [µg/g]	35	700	380	500	23	11	18	29	28	13
Cu Residual [µg/g]	4.7	87	46	67	2.1	1.3	2.6	2.8	3.1	1.4

Lakefield - Ontario - KOL 2HO Phone: 705-652-2038 FAX: 705-652-6441 SGS Lakefield Research Limited P.O. Box 4300 - 185 Concession St.

Analysis

CA10170-APR05 LR Report :

ī 531ss-0.5cm-sp 532ss-0.5cm-sp 533ss-0.5cm-sp 534ss-0.5cm-sp 541ss-0.5cm-sp 545ss-0.5cm-sp 546ss-0.5cm-sp 547ss-0.5cm-sp 551ss-0.5cm-sp 551ss-41. 40 39: 38: 37. 36: 35. 34. ä 32:

u Total Recoverable [µg/g]	42	1200	1200 	810	35	13	. N	4,	24 38	24 38 46
li Exchangeable [µg/g]	ო	170	52	57	ო	2		~	4	1 4 7
Carbonate [µg/g]	7	25	12	31	v	~ ~		ر ۷	<.	<1 <1 <1
Reducible [µg/g]	17	270	140	270	12	4		ω	8 16	8 16 11
Organic [µg/g]	13	210	100	320	13	7		10	10 17	10 17 16
Residual [µg/g]	28	190	230	140	16	7		15	15 14	15 14 20
Total Recoverable [µg/g]	73	1100	600	830	40	15		29	29 44	29 44 46
Exchangeable [µg/g]	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	v	0.7	.7 < 0.7	0.7 < 0.7 0.7
Carbonate [µg/g]	-	0	7	ę	~	-	4		<i>4~</i>	4
Reducible [µg/g]	5.0	21	16	27	3.7	2.4	3.9		4.9	4.9 3.7
Organic [µg/g]	ъ	59	22	59	4	4	9		9	6
o Residual [µg/g]	3.8	6.7	6.0	5.7	4.4	3.6	4.4		2.9	2.9 4.1
Total Recoverable [µg/g]	14	100	72	120	7.0	5.1	9.5		9.7	9.7 7.6
Exchangeable [µg/g]	۲ ک	< 5 2	د ۲	< 5	د ۲	< 5	ດ 2		< 5	<5 <5
e Carbonate [µg/g]	< 5 <	വ V	ى v	< ភ	< 5	< 5	ۍ ۲		5	< 5 < 5
Reducible [µg/g]	۸ ت	с V	ر م	< 5 <	с V	د ۲	د 5 <		< 5	< 5 < 5 < 5
Organic [µg/g]	< 5	< 5 <	د ک	د ۲	< 5	< 5	د 5 ×		< 5	< 5 < 5
Residual [µg/g]	< 5	ک ۲	v v	5	د ۲	< 5	ሪ 2		< 5	<5 <5
[otal Recoverable [µg/g]	5	۸ م	۸ ئ	< 5 5	د د 5	< 5 <	د 5 د		< 5 <	< 5 < 5

Technical Manager, Spectroscopy

Environmental, Analytical Services Rob Irwin B.Sc., C.Chem

d Research Limited) - 185 Concession St.	tario - KOL 2HO	52-2038 FAX: 705-652-6441	
SGS Lakefield Resea	P.O. Box 4300 - 185 (Lakefield - Ontario - K	Phone: 705-652-2038	

C. Wren and Associates - Sudbury

Attn : Chris Wren

64 Baker Street Guelph, Ontario, N1H 4G1

Phone: (519) 766-1039 Fax:(519) 766-4360

Wednesday, October 19, 2005

Date Rec. :	13 April 2005
LR. Ref. :	CA10170-APR05
Project :	Sudbury Soils Phase 2
Copy to :	#1

CERTIFICATE OF ANALYSIS

Final Report

51:

20

49:

48:

47:

46:

45:

44:

43:

45

Analysis

	552ss-0.5cm-sp5 lit SG Apr8/05	553ss-0.5cm-sp5 lit SG Apr8/05	554ss-0.5cm-sp lit SG Apr8/05	557ss-0.5cm-sp ⁴ lit SG Apr8/05	559ss-0.5cm-sp lit SG Apr8/05	560ss-0.5cm-sp lit SG Apr8/05	561ss-0.5cm-sp lit SG Apr8/05	562ss-0.5cm-sp lit SG Apr8/05	563ss-0.5cm-sp lit SG Apr8/05	564ss-0.5cm-sp lit SG Apr8/05
As Exchangeable [µg/g]	< 5	< 5	ۍ ۷	< 5	< 5	< 5	<5	< 5	< 5	< 5
As Carbonate [µg/g]	ہ م	ى v	ទ v	< 5 <	ري ک	< 5	5		د در	ې ۲
As Reducible [µg/g]	ہ م	رب م	9	< 5 <	< 5	\$ V	7	< 5	v v	ې ۲
As Organic [µg/g]	۸ ۲	ง ง	12	د ۲	5	ۍ ۷	7	< 5	ې ۲	ى ۲
As Residual [Jg/g]	л С	ы V	 <!--</td--><td>د م</td><td>ری ۲</td><td>ю v</td><td>< 5 5</td><td>< 5</td><td>< 5 <</td><td>د ۲</td>	د م	ری ۲	ю v	< 5 5	< 5	< 5 <	د ۲
As Total Recoverable [µg/g]	5	Q	21	ہ م	с V	د 5	12	< 5	Ø	< 5 <
Co Exchangeable [µg/g]	< 0.3	< 0.3	0.4	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Co Carbonate [µg/g]	< 0.3	< 0.3	0.4	< 0.3	< 0.3	< 0.3	0.6	< 0.3	< 0.3	< 0.3
Co Reducible [Jg/g]	2.9	4.1	8.1	4.3	1.7	1.7	9.9	1.4	6.0	2.1
Co Organic [µg/g]	4.6	3.2	6.4	5.0	2.2	3.0	4.4	2.1	3.0	3.7
Co Residual [µg/g]	3.7	3.8	6.4	3.4	3.4	3.5	6.1	2.9	5.3	4.2
Co Total Recoverable [µg/g]	12	10	17	15	4.3	5.1	17	3.3	13	6.6
Cu Exchangeable [µg/g]	< 0.1	< 0.1	3.1	< 0.1	< 0.1	< 0.1	0.3	< 0.1	4.1	< 0.1
Cu Carbonate [µg/g]	< 0.1	0.4	48	0.8	0.6	< 0.1	12	< 0.1	18	0.6
Cu Reducible [µg/g]	3.6	20	130	4.0	4.6	3.5	74	3.3	120	7.6
Cu Organic [µg/g]	70	64	200	42	22	23	130	13	180	34
Cu Residual [µg/g]	7.0	8.2	22	4.1	3.8	2.8	22	1.6	24	5.7

Analysis

LR Report : CA10170-APR05

552ss-0.5cm-sp 553ss-0.5cm-sp 557ss-0.5cm-sp 557ss-0.5cm-sp 559ss-0.5cm-sp 560ss-0.5cm-sp 561ss-0.5cm-sp 563ss-0.5cm-sp 563ss-0.5cm-sp 564ss-0.5cm-sp 564ss-0 ភ្ល ŝ 49: 48: 47 46: 45 4 43: 45

Cu Total Recoverable [II0/0]	120	110	510	130	40	34	270	19	420	64
Ni Exchangeable [ug/g]	7	च	69	9	2 vo		14	÷ v	49	4
Ni Carbonate [µg/g]	ω	ς α	59	4		0	21	, 1 ^	15	0
Ni Reducible [µg/g]	41	60	200	37	14	17	140	б	94	22
Ni Organic [µg/g]	80	36	110	31	თ	12	66	7	30	18
Ni Residual [µg/g]	28	32	74	17	21	15	96	12	92	26
Ni Total Recoverable [µg/g]	220	140	570	150	45	41	320	24	270	70
Pb Exchangeable [µg/g]	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	0.8	< 0.7
Pb Carbonate [µg/g]	~~	~~	~	-	2	-	ω	< 0.7	~	4
Pb Reducible [µg/g]	4.4	7.2	19	3.9	44	6.8	66	5.6	15	8.8
Pb Organic [µg/g]	د. هیر	თ	19	7	Q	сı	27	4	თ	ø
Pb Residual [µg/g]	2.7	3.0	3.7	3.0	4.7	3.2	4.4	3.5	3.2	2.0
Pb Total Recoverable [µg/g]	21	19	41	14	29	9.8	150	6.6	28	18
Se Exchangeable [µg/g]	ى v	ى v	ہ م	ہ ج	ې م	د ۲	ې ۲	د د	د ۲	د ۲
Se Carbonate [Jug/g]	د ۲	۸ 5	ក ភ	< 5	ក ក	5	< 5 <	د ح	د ۲	ις V
Se Reducible [µg/g]	ہ ک	ې ۲	د ۲	د ح	< ប	ې ۲	< 5 5	< ភ	< ក ភ	۸ 5
Se Organic [µg/g]	< 5 <	د ۲	۸ ភ	د ۲	ۍ ۷	ۍ ۷	ک ک	< ភ	с v	< 5 <
Se Residual [µg/g]	د د	< 5	< 5	< 5	د ۲	د ۲	۸ 5	< 5 <	ې ۲	< 5
Se Total Recoverable [µg/g]	< 5 <	< 5	< 5	< 5 <	< 5 <	< 2 2	< 5	د ۲	< 5	< 5

Environmental, Analytical Services Technical Manager, Spectroscopy Rob Invin B.Sc., C.Chem たんご N.Y.

C. Wren and Asso	ciates - Sı	dbury				Wedne	esday, Octo	ber 19, 200	5	
64 Baker Street Guelph, Ontario, N1H 4	<u>6</u> 1						Date Rec. : LR. Ref. : Project :	13 April 2 CA10170 Sudbury 3	2005)-APR05 Soils Phase 2	
Phone: (519) 766-1039 Fax:(519) 766-4360							Copy to :	#		
		Ŭ	CERTIF	ICATE	OF AN	IALYSI	S			
				Final	Report					
Analysis	52: 565ss-0.5cm-sp lit SG Apr8/05	53: 566ss-0.5cm-sp lit SG Apr8/05	54: 567ss-0.5cm-sp5 lit SG Apr8/05	55: 68ss-0.5cm-sp5 lit SG Apr8/05	56: 69ss-0.5cm-sp5 lit SG Apr8/05	57: 70ss-0.5cm-sp ! lit SG Apr8/05	58: 571ss-0.5cm-sp5 lit SG Apr8/05	59: 572ss-0.5cm-sp ⁴ lit SG Apr8/05	60: 573ss-0.5cm-sp 57 lit SG Apr8/05	61: 4ss-0.5cm-sp tt SG Apr8/05
As Exchangeable [µg/g]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
As Carbonate [µg/g]	< 5	< 5 <	ຽ ເ	ເ N	< 5	< 5 <	5	ې ۲	۸ 5	< 5
As Reducible [µg/g]	< 5	ک ۲	ې ۲	12	< 5	10	17	ى ۷	ω	< 5 <
As Organic [µg/g]	< 5	< 5	ۍ ۷	53	7	9	21	ა ა	15	< 5 <
As Residual [µg/g]	5	< 5	Ω V	< 5 <	< 5	د ۲	< 5	دی ۸	ເ v	 ស
As Total Recoverable [µg/g]	< 5 <	< 5 <	د ۲	45	5	15	46	5	21	< 5
Co Exchangeable [µg/g]	< 0.3	< 0.3	< 0.3	2.7	< 0.3	< 0.3	0.5	< 0.3	0.8	< 0.3
Co Carbonate [µg/g]	< 0.3	< 0.3	< 0.3	0.7	< 0.3	< 0.3	0.6	< 0.3	< 0.3	< 0.3
Co Reducible [µg/g]	4.2	4.7	3.1	44	6.6	6.1	10	1.1	5.2	2.1
Co Organic [µg/g]	3.2	4.7	5.5	109	4.5	2.7	11	1.7	6.8	3.6
Co Residual [µg/g]	5.2	3.9	6.2	17	5.5	7.0	7.8	2.2	5.6	4.3
Co Total Recoverable [µg/g]	7.9	10	5.6	68	15	16	44	2.8	21	5.6
Cu Exchangeable [µg/g]	1.4	0.8	< 0.1	2.0	< 0.1	0.3	< 0.1	< 0.1	< 0.1	< 0.1
Cu Carbonate [µg/g]	5.9	12	0.6	28	4.4	13	9.6	< 0.1	< 0.1	1.6
Cu Reducible [µg/g]	69	66	8.2	30	42	110	51	2.9	9.7	5.4
Cu Organic [µg/g]	120	55	26	660	130	130	220	,	130	23
Cu Residual [µg/g]	12	7.1	3.4	111	21	27	55	2.2	25	2.7

CA10170-APR05 LR Report :

Analysis	52: 565ss-0.5cm-sp lit SG Apr8/05	53: 566ss-0.5cm-sp lit SG Apr8/05	54:) 567ss-0.5cm-sp lit SG Apr8/05	55: 568ss-0.5cm-sp: lit SG Apr8/05	56: 569ss-0.5cm-sp lit SG Apr8/05	57: 570ss-0.5cm-sp lit SG Apr8/05	58: 571ss-0.5cm-sp lit SG Apr8/05	59: 572ss-0.5cm-sp { lit SG Apr8/05	60: 573ss-0.5cm-sp lit SG Apr8/05	61: 574ss-0.5cm-sp lit SG Apr8/05
Cu Total Recoverable fuoloi	160	200	77	750	220	000	500	φ	220	32

Cu Total Recoverable [µg/g]	160	200	47	750	220	590	500	19	 220
Vi Exchangeable [µg/g]		თ	~ ~	110	4	ω	28	~	41
ii Carbonate [µg/g]	ო	ۍ	ر	39	1 3	14	36	~ +	, v
√i Reducible [µg/g]	37	88	25	180	160	67	160	თ	78
4i Organic [µg/g]	19	55	19	490	74	30	150	Q	64
vi Residual [µg/g]	61	31	19	220	70	160	100	10	55
vi Total Recoverable [µg/g]	87	210	50	850	360	400	710	23	290
² b Exchangeable [µg/g]	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7
^b b Carbonate [µg/g]	ę	~	*	~	<u>ل</u>	7	2		2
b Reducible [µg/g]	32	8.6	6.9	31	88	21	17	4.5	10
^o b Organic [µg/g]	16	ۍ	9	46	37	თ	15	4	13
^o b Residual [µg/g]	2.9	2.9	2.8	4.3	4.1	5.1	4.3	1.6	3.8
Pb Total Recoverable [µg/g]	31	31	1.	64	32	44	45	5.7	26
Se Exchangeable [µg/g]	د ۲	5	< ۍ <	< 5	< 5 <	د ۲	< 5	< 5	د ۲
Se Carbonate [µg/g]	5	۸ 5	< ភ	< 5 <	< ភ	< 5	< 5	< 5	< 5
Se Reducible [µg/g]	< ភ	< د 5	< ភ	< 5 <	د ت	< 5 <	< 5	< 5	د ت
Se Organic [µg/g]	< ភ	5	 ក 	< 5 <	< 5	ى د	د 5	< 5	S V
Se Residual [µg/g]	5		< 5 <	د د	< 5	Ω V	< 5	< 5	< 5 2
Se Total Recoverable [µg/g]	ក ភ	< ភ	ក ក	ې ۷	< ភូ	ក ក	< ភ	< 5	۷ ۲

NY X

Environmental, Analytical Services Technical Manager, Spectroscopy Kob Invin B.Sc., C.Chem

P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2038 FAX: 705-652-6441 SGS Lakefield Research Limited

C. Wren and Associates - Sudbury

Attn : Chris Wren

64 Baker Street Guelph, Ontario, N1H 4G1

Phone: (519) 766-1039 Fax:(519) 766-4360

Wednesday, October 19, 2005

Date Rec. :	13 April 2005
LR. Ref. :	CA10170-APR05
Project :	Sudbury Soils Phase 2
Copy to :	#1

Copy to :

CERTIFICATE OF ANALYSIS

Final Report

71:

20

69

68:

67:

66:

65:

5

63:

62:

Analysis

	577ss-0.5cm-sp lit SG Apr8/05	580ss-0.5cm-sp lit SG Apr8/05	581ss-0.5cm-sp. lit SG Apr8/05	582ss-0.5cm-sp lit SG Apr8/05	584ss-0.5cm-sp lit SG Apr8/05	585ss-0.5cm-sp lit SG Apr8/05	586ss-0.5cm-sp lit SG Apr8/05	588ss-0.5cm-sp lit SG Apr8/05	589ss-0.5cm-sp lit SG Apr8/05	590ss-0.5cm-sp lit SG Apr8/05
As Exchangeable [µg/g]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< ភ	< 5
As Carbonate [µg/g]	< 5	ری ۲	ۍ ۲	ក ភ	ក ក	ى د	د م	< 5 <	د م	< 5
As Reducible [µg/g]	Q	ۍ	21	د ۲	15	Ø	, -	< 5		< 5
As Organic [µg/g]	9	د ۲	34		16	თ	12	< 5	۸ ت	< 5
As Residual [µg/g]	< 5 <	< 5 <	< 5	< 5 <	ہ ع	 5 	Ω V	< 5	< 5 5	< 5
As Total Recoverable [µg/g]	თ	د ح	53	ດ V	24	10	16	ہ ک	< 5 <	< 5 <
Co Exchangeable [µg/g]	0.3	<u>.</u> .	1.4	< 0.3	1.6	0.5	0.5	0.3	< 0.3	< 0.3
Co Carbonate [µg/g]	< 0.3	< 0.3	0.4	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Co Reducible [µg/g]	8.4	2.4	7.6	3.2	15	8,4	6.1	9.6	3.4	2.7
Co Organic [µg/g]	9.0	2.1	5.7	4.3	9.5	3.8	7.0	3.7	2.9	2.3
Co Residual [µg/g]	9.8	4.4	7.1	3.4	10	8.4	14	7.5	4.6	3.8
Co Total Recoverable [µg/g]	24	7.3	22	7.7	25	14	18	12	9.6	6.1
Cu Exchangeable [µg/g]	0.1	3.1	0.7	0.7	32	3.5	14	5.0	< 0.1	< 0.1
Cu Carbonate [µg/g]	3.4	2.7	6.1	0.7	75	21	39	12	< 0.1	< 0.1
Cu Reducible [µg/g]	20	26	29	7.7	340	160	540	230	15	2.8
Cu Organic [µg/g]	270	210	130	24	240	130	710	190	44	22
Cu Residual [µg/g]	59	18	30	3.0	46	32	61	16	4.9	2.2

LR Report : CA10170-APR05

577ss-0.5cm-sp580ss-0.5cm-sp581ss-0.5cm-sp582ss-0.5cm-sp584ss-0.5cm-sp585ss-0.5cm-sp586ss-0.5cm-sp588ss-0.5cm-sp589ss-0.5cm-sp589ss-0.5cm-sp589ss-0.5cm-sp589ss-0.5cm-sp580s 7 ö 69: 68: 67: 66: 65: 64: 63: 62: Analysis

Cu Total Recoverable [µg/g]	360	230	250	29	780	380	1400	570	94	5
Ni Exchangeable [µg/g]	42	47	47	Q	110	49	62	46		4
Ni Carbonate [µg/g]	13	ę	16		13	6	 *	7		v
Ni Reducible [µg/g]	150	56	98	12	170	94	130	130		33
Ni Organic [µg/g]	170	30	52	37	80	38	160	55		24
Ni Residual [µg/g]	110	84	58	14	270	160	530	95		25
Ni Total Recoverable [µg/g]	510	170	320	37	560	320	670	350		89
Pb Exchangeable [µg/g]	< 0.7	< 0.7	< 0.7	0.8	6.4	1.3	< 0.7	1.0	v	0.7
Pb Carbonate [µg/g]	2	2	*	< 0.7	17	4	0	ю		N
Pb Reducible [µg/g]	9.8	8.7	ار ۳۰	4.2	129	48	30	40	CN.	0
Pb Organic [µg/g]	14	10	13	4	36	20	52	17	<i>4</i> ~~	~
Pb Residual [µg/g]	2.7	4.0	3.1	2.7	7.4	12	6.2	4.2	4	сл
Pb Total Recoverable [µg/g]	23	16	24	6.7	150	78	73	33	4	
Se Exchangeable [µg/g]	ง ง	ہ د	ы V	د ۲	< 5 <	د ۲	< 5	5	v	с С
Se Carbonate [µg/g]	< 5 <	< 5	< 5	< 5	< 5 <	< 5 2	< 5	د 5	v	с С
Se Reducible [µg/g]	< 5	< 5	د ۲	< ភូ	< 5 <	۸ 5	< 5	< 5	v	ц С
Se Organic [µg/g]	< 5	< 5	< 5	< 5		< 5 2	7	< 5	v	с С
Se Residual [µg/g]	< 5 <	ۍ ۲	 5 	< 5	5	с V	< 5	< 5	v	ц
Se Total Recoverable [ug/g]	< 5 <	ہ م	< 5 <	< 5 ح	د ۲	5	< 5	< 5	v	5

Environmental, Analytical Services Technical Manager, Spectroscopy Rob Invin B.Sc., C.Chem

Attn : Chris Wren		ł								
64 Baker Street Guelph, Ontario, N1H 4	f61						Date Rec. : LR. Ref. : Project :	13 April 20 CA10170 Sudbury S	005 -APR05 Soils Phase 2	
Phone: (519) 766-1039 Fax:(519) 766-4360							Copy to :	#1		
		U	CERTIF	ICATE	OF AI	VALYSI	S			
				Final	Report					
Analysis	72: 591ss-0.5cm-sp [:] lit SG Apr8/05	73: 592ss-0.5cm-sp lit SG Apr8/05	74: 593ss-0.5cm-sp lit SG Apr8/05	75: 594ss-0.5cm-sp ⁴ lit SG Apr8/05	76: 596ss-0.5cm-sp lit SG Apr8/05	77: 597ss-0.5cm-sp lit SG Apr8/05	78: 598ss-0.5cm-sp5 lit SG Apr8/05	79: 599ss-0.5cm-sp6 lit SG Apr8/05	80: 80:ss-0.5cm-sp.60 lit SG Apr8/05	81: 1ss-0.5cm-sp t SG Apr8/05
As Exchangeable [ug/g]	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5	< 5
As Carbonate [µg/g]	۸ م	د ۲	ນ v	م م	ې ۸	ى v	ດ V	< ភ	ς ν	< 5 5
As Reducible [µg/g]	د ۲	< ភ	ក ក	< 5 <	< ភ	28	13	< 5	دی <	< 5
As Organic [µg/g]	۸ ئ	۸ ភ	ۍ ۷	۸ 5	۸ 5	21	12	< 5 <	ъ v	< 5 5
As Residual [µg/g]	ក ភ	 	ഹ V	< 5 <	ې م	ю V	ທ V	ى v	< ភ	< 5 <
As Total Recoverable [µg/g]	 ក 	ក ភ	ក ក	< 5 م	ۍ ۷	52	29	< 5 <	< 5	5
Co Exchangeable [µg/g]	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	8.3	1.5	< 0.3	< 0.3	< 0.3
Co Carbonate [µg/g]	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Co Reducible [Jg/g]	1.8	2.3	2.7	1.3	5.6	8.3	17	2.0	1.3	1.3
Co Organic [µg/g]	2.7	2.0	2.8	2.0	4.9	5.5	8.6	2.4	1.7	1.6
Co Residuat [µg/g]	4.2	4.1	3.6	3.2	15	12	7.6	3.7	3.0	3.1
Co Total Recoverable [µg/g]	4.2	6.0	7.8	3.8	7.4	38	23	6.5	3.6	3.4
Cu Exchangeable [µg/g]	< 0.1	< 0.1	< 0.1	< 0.1	0.7	21	0.9	< 0.1	< 0.1	< 0.1
Cu Carbonate [µg/g]	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	2.6	< 0.1	< 0.1	< 0.1	< 0.1
Cu Reducible [µg/g]	1.0	8.6	3.1	2.3	20	190	32	4.1	3.0	2.9
Cu Organic [µg/g]	25	50	8.7	13	110	310	190	48	7.7	11
Cu Residual [µg/g]	3.6	4.1	0.8	1.5	18	40	28	8.4	1.0	1.6

Wednesday, October 19, 2005

C. Wren and Associates - Sudbury

SGS Lakefield Research Limited P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2038 FAX: 705-652-6441

SMLJ enilnO

LR Report : CA10170-APR05

I 591ss-0.5cm-sp592ss-0.5cm-sp593ss-0.5cm-sp594ss-0.5cm-sp596ss-0.5cm-sp597ss-0.5cm-sp598ss-0.5cm-sp599ss-0.5cm-sp600ss-0.5cm-sp601ss-0.5cm-sp lit SG Apr8/05 lit SG 81: 80: -<u>7</u> 8 12 76: 5. 74: ž 72 Analysis

contractione ($\mu g/g$) c <thc< th=""> c c c</thc<>	ontable [$\mu g/g$] < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 <th>วัน Total Recoverable [µg/g] โเ Evchanceable [µg/g]</th> <th>36</th> <th>75 a</th> <th>18</th> <th>20</th> <th>140 10</th> <th>850 280</th> <th></th> <th>250 72</th> <th>250 73 72 < 1</th> <th>250 73 16 72 <1 1</th>	วัน Total Recoverable [µg/g] โเ Evchanceable [µg/g]	36	75 a	18	20	140 10	850 280		250 72	250 73 72 < 1	250 73 16 72 <1 1
aducible [µg/g] 11 19 5 8 36 31 33 34 33 33 34 33 34 31 33 33 34 33 34 31	ducible [µg/g] 11 19 5 8 36 ganic [µg/g] 17 13 9 8 31 sidual [µg/g] 17 13 9 8 31 sidual [µg/g] 18 28 9 10 68 tal Recoverable [µg/g] 36 67 25 24 100 changeable [µg/g] <0.7	excnangeable [µg/g] Carbonate [µg/ɑ]	× 7 × 7	» √	ω <u>γ</u>		5		2 2	280 /2 2 <1	280 72 41	280 /2 <1 1 2 <1 <1 <1
ganic [µg/g] 17 13 9 8 31 ssidual [µg/g] 18 28 9 10 68 bata Recoverable [µg/g] 36 67 25 24 100 xchangeable [µg/g] 36 67 25 24 100 xchangeable [µg/g] <0.7		educible [µg/g]	.	19	5	8	36		170	170 230	170 230 22	170 230 22 6
sidual [Jg/g] 18 28 9 10 68 tal Recoverable [Jg/g] 36 67 25 24 100 xchangeable [Jg/g] < 0.7 < 0.7 < 0.7 < 0.7 arbonate [Jg/g] 2.2 2 1 2.3 7.8 9.4 rganic [Jg/g] 5 7 3 5 13 soldual [Jg/g] 4.2 4.9 3.0 4.4 5.0 otal Recoverable [Jg/g] 7.5 18 3.1 13 15 xchangeable [Jg/g] < 5 < 5 < 5 < 5 < 5 < 5 arbonate [Jg/g] < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 <	sidual [$\mu g/g$]182891068tal Recoverable [$\mu g/g$]36672524100changeable [$\mu g/g$] < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 arbonate [$\mu g/g$] < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 arbonate [$\mu g/g$] < 1 2 2 1 2 2 arbonate [$\mu g/g$] 2.2 6.1 2.3 7.8 9.4 ganic [$\mu g/g$] 5 7 3 7.8 9.4 ganic [$\mu g/g$] 4.2 4.9 3.0 4.4 5.0 solutal [$\mu g/g$] 7.5 18 3.1 13 15 vanceable [$\mu g/g$] < 5 < 5 < 5 < 5 < 5 arbonate [$\mu g/g$] < 5 < 5 < 5 < 5 < 5 arbonate [$\mu g/g$] < 5 < 5 < 5 < 5 < 5 < 5 arbonate [$\mu g/g$] < 5 < 5 < 5 < 5 < 5 < 5 < 5 arbonate [$\mu g/g$] < 5 < 5 < 5 < 5 < 5 < 5 < 5 arbonate [$\mu g/g$] < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 arbonate [$\mu g/g$] < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 arbonate [$\mu g/g$] < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 arbonate [$\mu g/g$] < 5 < 5	Drganic [µg/g]	17	13	თ	ω	31		51	51 140	51 140 22	51 140 22 7
Itecoverable [µg/g] 36 67 25 24 100 xchangeable [µg/g] < 0.7	tal Recoverable [µ0/g] 36 67 25 24 100 changeable [µ0/g] <0.7	Residual [µg/g]	18	28	6	10	68		120	120 80	120 80 20	120 80 20 9
xchangeable [µg/g] < 0.7	changeable [µg/g] < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7 < 0.7	fotal Recoverable [µg/g]	36	67	25	24	100		840	840 440	840 440 73	840 440 73 22
arbonate [µg/g] 2 2 1 2 <th2< th=""> 2 <th2< th=""> <</th2<></th2<>	arbonate [µg/g] 2 2 1 2 3 3 3 3 4 18 18 3	Exchangeable [µg/g]	< 0.7	< 0.7	< 0.7	< 0.7	< 0.7	÷	0	0 < 0.7	0 < 0.7 < 0.7	0 < 0.7 < 0.7 < 0.7
educible [µg/g] 2.2 6.1 2.3 7.8 9.4 18 rganic [µg/g] 5 7 3 5 13 25 rganic [µg/g] 4.2 4.9 3.0 4.4 5.0 4.9 esidual [µg/g] 4.2 4.9 3.0 4.4 5.0 4.9 otal Recoverable [µg/g] 7.5 18 3.1 13 15 77 xchangeable [µg/g] <5	educible [µg/g] 2.2 6.1 2.3 7.8 9.4 18 ganic [µg/g] 5 7 3 5 13 25 sidual [µg/g] 5 7 3 5 13 25 sidual [µg/g] 4.2 4.9 3.0 4.4 5.0 4.9 vial Recoverable [µg/g] 7.5 18 3.1 13 15 77 changeable [µg/g] <5	Carbonate [µg/g]	7	~	۲-	7	0	2		т	с С	3 3 3
rganic [µg/g] 5 7 3 5 13 25 28 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 29 27 29 29 27 27 29 27 27 29 27 27 27 27 27 27 27 27 27 27 27 27 27 27 25	ganic [µg/g] 5 7 3 5 13 25 <	teducible [µg/g]	2.2	6.1	2.3	7.8	9.4	18		9.0	9.0 6.0	9.0 6.0 2.9
esidual [µg/g] 4.2 4.9 3.0 4.4 5.0 4.9 otal Recoverable [µg/g] 7.5 18 3.1 13 15 77 xchangeable [µg/g] <5	sidual [lg(g] 4.2 4.9 3.0 4.4 5.0 4.9 tal Recoverable [lg/g] 7.5 18 3.1 13 15 77 changeable [lg/g] <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	Jrganic [µg/g]	ъ	7	ო	5	13	25		£	11 8	11 8 3
otal Recoverable [µg/g] 7.5 18 3.1 13 15 77 xchangeable [µg/g] <5	tal Recoverable [tg/g] 7.5 18 3.1 13 15 77 changeable [tg/g] <5	Residual [µg/g]	4.2	4.9	3.0	4.4	5.0	4,9		2.6	2.6 4.4	2.6 4.4 3.5
xchangeable [µg/g] < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	changeable [µg/g] <5	otal Recoverable [µg/g]	7.5	18	3.1	13	15	17		19	19 17	19 17 5.0
arbonate [µg/g] < 5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	arbonate [µg/g] <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	<pre>ixchangeable [µg/g]</pre>	< 5 <	< 5 <	5	۸ 5	د ح	V	10	5 < 5	5 <5 <5	5 <5 <5 <5
educible [µg/g] <5 <5 <5 <5 <5	sducible [Jg/g] <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	Carbonate [µg/g]	< 5	< 5	< 5	د ۲	ю V	2 v 2		< 5	< 5 < 5	< 5 < 5 < 5
	ganic [µg/g] <5 <5 <5 <5 <5 <5	<pre>teducible [ng/g]</pre>	د ۍ ۲	< ប	ۍ ۷	۸ 5	ې ۷	ទ >		< 5	< 5 < 5	< 5 < 5 < 5
esidual [µg/g] <5 <5 <5 <5 <1		otal Recoverable [µg/g]	< 5	د ۲	د ۲	د ۲	ъ v	v	10	ני א טי	5 < 5 < 5	5 <5 <5 <5

Environmental, Analytical Services Technical Manager, Spectroscopy Rob Invin B.Sc., C.Chem

C. Wren and Associates - Sudbury Attn : Chris Wren

64 Baker Street

Guelph, Ontario, N1H 4G1

Phone: (519) 766-1039 Fax:(519) 766-4360

Wednesday, October 19, 2005

te Rec. : 13 Ap	rril 2005
. Ref. : CA10	11 70-APR05
ject : Sudbu	ury Soils Phase 2

Copy to :

CERTIFICATE OF ANALYSIS

Final Report

88:

87

86:

85:

84:

83:

82:

Analysis

	602ss-0.5cm-sp lit SG Apr8/05	606ss-0.5cm-sp lit SG Apr8/05	607ss-0.5cm-sp lit SG Apr8/05	608ss-0.5cm-sp lit SG Apr8/05	611ss-0.5cm-sp lit SG Apr8/05	612ss-0.5cm-sp ^r lit SG Apr8/05	613ss-0.5cm-sp lit SG Apr8/05
As Exchangeable [µg/g]	< 5	< 5	< 5	< 5	< 5	< 5	< 5
As Carbonate [µg/g]	< 5	ې ۲	ہ ج	< 5	сл V	ເດ V	∩ N
As Reducible [µg/g]	< 5 5	< 5	5		< ភ	හ v	32
As Organic [µg/g]	9	< ភ	< 5	< 5	< 5	ເດ V	66
As Residual [µg/g]	< 5	v م	< ភ	< 5	د ۲	ഹ V	< 5
As Total Recoverable [µg/g]	12		 م 5 	< 5	ю V	ۍ ۲	110
Co Exchangeable [µg/g]	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	1.8
Co Carbonate [µg/g]	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3
Co Reducible [µg/g]	5.7	1.3	2.5	4.9	2.7	1.2	15
Co Organic [µg/g]	3.8	1.8	2.8	2.9	2.2	1.9	10.0
Co Residual [µg/g]	6.0	3.3	3.5	5.1	3.6	2.9	7.1
Co Total Recoverable [µg/g]	25	3.7	6.7	7.3	6.0	4.2	59
Cu Exchangeable [µg/g]	2.6	< 0.1	2.7	< 0.1	< 0.1	< 0.1	2.9
Cu Carbonate [µg/g]	0.8	< 0.1	13	0.3	0.2	0.2	2.8
Cu Reducible [µg/g]	150	4.0	85	6.2	1.9	3.4	78
Cu Organic [µg/g]	240	34	76	17	13	21	290
Cu Residual [µg/g]	20	2.0	5.0	3.3	1.8	3.0	23

CA10170-APR05 LR Report :

					•		
Analysis	82: 602ss-0.5cm-sp	83: 606ss-0.5cm-sp	84: 0607ss-0.5cm-sp	85: 608ss-0.5cm-sp	86: 611ss-0.5cm-sp	8/: 612ss-0.5cm-sp	88: 613ss-0.5cm-sp
	III SG Aprø/US	lit se Aprø/Us	III SG Apr8/U5	cuiarde de III	cu/sub so the	cuanda ec al	cularde de III
Cu Total Recoverable [µg/g]	980	27	260	32	21	32	580
Ni Exchangeable [µg/g]	39	4	16	5	۲ ۲	N	92
Ni Carbonate [µg/g]	۲. ۲	v	Q	× ۲	۰ ۲	v	с
Ni Reducible [µg/g]	110	30	51	18	17	13	160
Ni Organic [µg/g]	71	50	29	13	11	10	130
Ni Residual [µg/g]	120	11	33	13	12	17	20
Ni Totol Decemenable fue (a)	080	00	100	C.Y	50	30	620

Cu Total Recoverable [µg/g]	880	17	na7	34	21	32	000
Ni Exchangeable [µg/g]	39	4	16	5	÷ v	7	92
Ni Carbonate [µg/g]	۲. ۲	۲ ۲	9	۰ ۲	~ +	v	з
Ni Reducible [µg/g]	110	30	51	18	17	13	160
Ni Organic [µg/g]	71	50	29	13	11	10	130
Ni Residual [µg/g]	120	1-1-1	33	13	12	17	20
Ni Total Recoverable [µg/g]	940	36	150	43	32	39	620
Pb Exchangeable [µg/g]	< 0.7	< 0.7	< 0.7	0.8	< 0.7	< 0.7	< 0.7
Pb Carbonate [µg/g]	2	2	-	2	ю	ო	ო
Pb Reducible [µg/g]	10	3.3	6.0	3.1	3.2	4.6	24
Pb Organic [µg/g]	14	ю	5	ę	4	5	21
Pb Residual [µg/g]	5.3	4,2	4.9	4.0	5.7	3.2	4.1
Pb Total Recoverable [µg/g]	56	5.3	14	5.1	8.1	9.7	59
Se Exchangeable [µg/g]	< ۲	< 5	< 5 <	< 5	< 5	< 5 <	5
Se Carbonate [µg/g]	< ប	< 5	ى د	< 5 <	< 5	< 5	د د ک
Se Reducible [Jg/g]	< 5	< 5	< 5	< 5	< 5	< 5 <	ې ۲
Se Organic [µg/g]	5	< 5	ى ۲	< 5 <	< 5	د ۲	ი v
Se Residual [µg/g]	< 5	< 5	د ۲	۸ 5	< 5	< 5 <	ې ۲
Se Total Recoverable [ug/g]	< 5 <	< 5 <	 5 	< 5 <	د ۲	< 5 <	ې ۲

Environmental, Analytical Services Technical Manager, Spectroscopy Kob Invin B.Sc., C.Chem N.M.

Inco Technical Services Limited Research and Development 2060 Flavelle Boulevard, Sheridan Park Mississauga, Ontario, Canada L5K 1Z9

MEMORANDUM

То	Glenn Ferguson, Cantox Environmental Inc.		
From	Fred Ford	Date	September 16-2005
		2010	

Review of Lakefield Research Ni Speciation Results

Background

Subject

Lakefield Research is examining soil, dust and air filter samples from the Sudbury area to determine the type of Ni-bearing species present (Ni as metallic, oxide, sulphide or sulphate). They are using an SEM equipped with an X-ray spectrometer to conduct the chemical typing of the various particles. In the course of their study, Lakefield has determined that some of the Ni in some of these samples is present as the mineral Heazlewoodite (Ni₃S₂). I visited Lakefield Research September 15, 2005 to review their techniques and confirm their identification of Heazlewoodite.

Method and Equipment

Lakefield Research is conducting their study using the QEMSEM scanning electron microscope equipped with a light element energy dispersive X-ray detector (EDS). The EDS detector is capable of analyzing elements heavier than Boron (can determine carbon and oxygen).

The samples are introduced into the SEM using two types of sample mounts. Air filter samples are introduced as ~1cm square pieces cut from the original air filter. Soil and dust samples are sprinkled as loose powder on ~1cm diameter round stubs. Both sample varieties are coated with a thin layer of carbon to provide a grounding path for the electron beam.

Ni-bearing particles are detected using an automated scanning method, which moves the samples under the electron beam in a systematic manner. Greyscale images are obtained from each field of view. The brighter particles in each picture are most likely those that are Ni-bearing. An operator revisits these particles manually and an X-ray spectrum is obtained. The chemistry of each bright particle is determined in this manner and a mineral name is assigned.

Discussion

There are two limitations to the chemical typing of sulphide particles using X-ray microbeam techniques that should be noted.

First, the EDS detector cannot determine the presence of hydrogen, so hydroxide or hydroxyl groups (if present) cannot be identified. This limitation exists for all analytical techniques measuring X-ray production, since hydrogen is not capable of producing X-rays.

The second limitation concerns the resolution of the electron beam when producing X-rays in the SEM. When the electron beam strikes a particle, X-rays are produced within a spherical region called the interaction volume. This is generally on the order of 3 to 5 microns in diameter, and while this may seem

small, the bright particles I observed in the dust filter samples were generally 1 to 2 microns in diameter. This means that X-rays are being generated outside of the particle in question, by the filter paper and surrounding particles for example. It is difficult to calculate the contribution that these extraneous X-rays are contributing to the overall chemistry signal obtained for a very small particle (Total X-rays signal = X-rays from the target particle + some unknown contribution from the surroundings). This greatly increases the uncertainty of chemical typing.

Review of Ni-Sulphide Mineralogy

There are two stable Ni sulphide compounds that would have similar X-ray spectra in the scanning electron microscope (the spectra should contain only S and Ni, and be devoid of Fe and Cu). These are Millerite (NiS) and Heazlewoodite (Ni₃S₂). Millerite occurs naturally in Sudbury ore. Heazlewoodite is normally the Ni-bearing sulphide phase in smelter matte. To distinguish between these two phases by X-ray spectrometry, one needs to quantify the X-ray spectrum and compare the results against the ideal mineral chemistry summarized in Table 1 below. If the Ni-sulphide particle in question contains 65% Ni, it is Millerite, if the particle contains 72% Ni, it is Heazlewoodite.

Mineral	Ni Assay (Wt.%)	S Assay (Wt.%)
Millerite (NiS)	65	35
Heazlewoodite (Ni ₃ S ₂)	72	27

Table 1: Ni Sulfide Mineral Chemistry

Lakefield Results – Air Filter Samples

I reviewed five particles on filter paper that Lakefield personnel had identified as possible occurrences of Heazlewoodite. The X-ray spectrum obtained from these particles had Ni and S peaks, however, in each case, the spectrum also contained additional X-ray peaks. As mentioned previously in the discussion concerning X-ray interaction volume, it is assumed that these additional peaks are produced outside of the target particle due to the small particle size. For example, the presence of silicon and oxygen peaks in the X-ray spectrum is usually attributed to the surrounding filter paper. However, each of the possible Heazlewoodite particles examined also contained minor peaks for Fe and Cu. The presence of these elements in the X-ray spectrum could possibly be explained by X-ray generation in surrounding particles, however, the amount of Fe and Cu I observed in each of the possible Heazlewoodite particles appeared to be relatively constant (not what you would expect for a random sampling of surrounding material).

There are two additional challenges that complicate the examination of particulate matter trapped in filter paper in the SEM. The first is the non-planar geometry of the particle, whereby particles are typically trapped at any angle by the filter paper. The routines that are used to quantify X-ray spectra assume that the beam impinges on the sample at a 90-degree angle. Any deviation from this geometry increases the uncertainty in the quantitative analysis, making the identification of Millerite from Heazlewoodite discussed above more difficult. The second challenge is caused by uneven application of carbon coating (for sample grounding) due to filter paper shadowing. This uneven coating of carbon can contribute to negative charge build-up on the target particle, preferentially decreasing the production of more energetic X-rays like Ni (alters the Ni:S ratio). Also, the quantitative routines assume that the entire sample has a uniform coating of carbon resulting in a uniform absorption of X-rays.

All of the factors discussed above make the identification of Heazlewoodite in trapped filter paper particulate an uncertain undertaking. The quantitative analysis required to differentiate Millerite from Heazlewoodite cannot be accurately undertaken with such small particles in a three dimensional geometry. The particles I examined at Lakefield might have been Heazlewoodite, or they might have been something else (Millerite, Metallic Ni with a Sulphate coating?).

Lakefield Results – Dust Samples

I reviewed five dust particles on stubs that Lakefield personnel had identified as possible occurrences of Heazlewoodite. The particles were much larger than the air filter particulate, typically on the order of 5 to 10 microns. The X-ray spectrum obtained from these larger particles was much cleaner than the spectrum from the air filter particulate, containing only Ni and S peaks (no other extraneous X-ray peaks). Quantitative results from the X-ray spectra produced Ni assays between 70 and 80 weight percent (indicating Heazlewoodite). I am 90% certain that the particles I observed in the dust samples have been correctly identified as Heazlewoodite (Ni₃S₂).

Recommendations

- The fine size of the air filter particulate represents the largest challenge to the accurate identification of the Ni-sulphide species present. Higher resolution scanning electron microscopes (i.e. field emission SEM or transmission electron microscope - TEM) with smaller probing beams are available and should be used to better resolve the X-ray spectrum of the Ni-sulphide particles.
- 2) Mount the dust and soil samples in epoxy impregnated mounts and polish the surface. The particles are sufficiently large in some cases that it will be possible to do a full quantitative analysis using an electron microprobe. This should resolve any ambiguity whether the Ni-sulphide present is Heazlewoodite or Millerite. Even if the particles were too small for microprobe analysis, this mounting technique would eliminate geometric uncertainty in the quantitative X-ray analysis programs, providing more reliable X-ray analysis in the SEM.

Glenn Ferguson Program director/Senior Scientist Cantox Environmental

23-November-05

Dear Glenn,

Please find enclosed a report on the measurements carried out for air filter samples at the National Synchrotron Light Source (NSLS, [http://www.nsls.bnl.gov/]) at Brookhaven National Laboratory (BNL) in October 2005 and at the Synchrotron Radiation Center (SRC, [http://www.src.wisc.edu/]) at the University of Wisconsin-Madison, in November, 2005. A description of all sample and reference compounds, as well as the measurement parameters are listed in Tables 1 and 2 with further details in the text.

The measurements were focused on identifying the nickel and sulfur speciation in the air filter samples provided using X-ray Absorption Near-Edge Structure (XANES) spectroscopy.

If you have questions about the report or if there is any further information you require please do not hesitate to contact me. Sincerely,

Jeff Warner

Jeff Warner, Ph.D Industrial Liaison Scientist Canadian Light Source, Inc. tel. 306.657.3568 jeff.warner@lightsource.ca

Introduction

X-ray absorption spectroscopy is capable of probing *in-situ* a particular element in a complex sample in any physical state.

X-rays and charged particle beams (like electrons) interact with matter in a number of distinct ways. The interactions typically involve excitation of, or scattering with, the medium. X-ray photons in the energy range 500 electron volts (eV) to 50 keV, corresponding to wavelengths from 25 angstroms (Å) to 0.25 Å interact with matter mainly through the photoelectric excitation process. In this regime, energies correspond to the binding energies of tightly bound atomic core electrons. Since every atom has corelevel electrons with well-defined binding energies, it is possible to select the element to probe by tuning the x-ray energy to an appropriate absorption edge. Oxidation state and chemical bonding have small but detectable effects on the potential or binding energy of these core electrons, which manifests as a shift in the position of the x-ray absorption edge. This is the basis for x-ray absorption near-edge structure (XANES) spectroscopy.

X-ray absorption near-edge structure (XANES) spectra can be divided into two regions. The pre-edge region, where the incident photon energy is less than the binding energy of the core level electron, and the main edge region, where transitions occur from a core level to unoccupied bound states or to continuum states (Brown et al., 1988). In the pre-edge region transitions are limited to low probability localized transitions of the K level (1s) electrons to the lowest energy unoccupied or partially occupied levels. For the first row transition elements a pre-edge peak corresponds to a 1s-3d transition and is diagnostic for determination of the site symmetry of the absorbing atom and in some cases for the oxidation state as well. The total XANES region typically extends approximately 50 eV above the absorption edge. Analysis of the shape, which is determined by the relative intensities and widths of these low lying "bound state" transitions, and position of the absorption edge can reveal details of the metal site symmetry, oxidation state and the nature of the surrounding ligands. As the electronegativity of the ligands increase or as the oxidation state of the metal increases, the absorption edge moves to higher energy. This shift can be as large as 5 eV per unit oxidation state change but is typically around 1 or 2 eV.

Background

The experimental and theoretical details of x-ray absorption near edge structure (XANES) spectroscopy and extended x-ray absorption fine structure (EXAFS) spectroscopy have been extensively described in the literature (Stern and Heald, 1983). These techniques have risen in popularity recently due to increased accessibility to synchrotron radiation and advances in the state of EXAFS theory and data analysis methods. Currently, with the development in *ab initio* theories, which better account for multiple scattering from electrons, precise knowledge of coordination numbers and bond distances can be obtained within a distance of 8 angstroms of the central absorbing atom.

Unfortunately, the analytical power of the above techniques is diminished when the system under investigation is a heterogeneous mixture of species. In this situation, each absorbing element may have different local coordination environments. This complicates the analysis because the number of structural parameters needed to describe the data properly may exceed the number of independent data points in the experimental spectrum. One method which has been developed to analyze complex mixtures is least squares linear combinations of model compound spectra to fit an unknown sample spectrum (O'Day, et al., 2004; Ressler, 2000).

Synchrotron-based S K-edge XANES spectroscopy has been previously used to identify and quantify sulfur in environmental samples (Solomon et al. (2003) and references therein).

Sample Descriptions

The standard and unknown Ni K-edge samples were collected on beamline X11A at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory, NY in October, 2005. Sulfur K-edge spectra were collected on the Double Crystal Monochromator (DCM) beamline at the Synchrotron Radiation Center (SRC) at the University of Wisconsin, Madison, WI in November, 2005.

Ni K-edge XANES measurements were made on three unknown samples (Table 1) consisting of air-filtered nickel-bearing particulates at different locations. Portions of the air filter not exposed to particulates were used as blanks. Several samples were not shipped in time to be measured at the NSLS. These samples were sent to the NSLS after our return and after our official beamtime and will be measured during Beamline Scientist discretionary time.

Sulfur K-edge measurements were made on several unknown aerosol samples on filter paper (Table 2), including a sample (54057822) labeled as lab bottle.

Materials and Methods

Ni K-edge (8333 eV) spectra were recorded on beamline X11A at the NSLS at Brookhaven National Laboratory. The storage ring was operating at 2.8 GeV with a current of 280 mA. Beamline X11A utilizes a 1.36 T bending magnet as a source. The beamline was equipped with a Si(111) double crystal monochromator. Higher harmonics of the incident beam were rejected by detuning the second monochromator crystal by 50% for nickel. Entrance slits defined the beam size at 0.9x9.5 mm.

Transmission data were collected from powder samples diluted with boron nitride (~1:20) under ambient pressure and temperature. Unknown compound spectra were collected using a fluorescence ion chamber detector (Lytle et al., 1984) filled with argon gas and employing a Co (3 μ absorbance) filter and Soller slits to minimize unwanted elastic scattering. X11A was calibrated using Ni foil, defining the Ni K-edge at 8333 eV (McMaster et al., 1969).

Sulfur K-edge (2472 eV) spectra were recorded on the high vacuum DCM beamline at the SRC located at the University of Wisconsin, Madison. The storage ring, Aladdin, was operating at 800 MeV with a current of 160 mA. The DCM beamline utilizes Si(111) monochromator crystals over the energy range 1500 - 4000 eV. Spectra were collected in fluorescence mode using a 9 element Ge detector. The DCM was calibrated using elemental sulfur defining the edge position at 2472 eV.

Air filter samples were prepared by carefully cutting strips of air filter ($\sim 3x12$ mm) while wearing gloves and loading these in a Teflon sample holder contained using kapton tape. Spectra contained in this report were obtained on five such strips layered together.

Raw Ni K-edge and S K-edge data were processed using the program *Athena* (v. 0.8.045; Ravel and Newville, 2005). Least squares linear combination fits were applied to the XANES spectra using the program SixPack (Webb, 2002). Ni K-edge linear combination fitting was applied over the range 8325-8375 eV for all standards and sample unknowns. Linear combination fitting of the sulfide peak was performed over the range 2465–2474 eV. Peak heights of sulfide were determined at 2471.5 eV and correlated against the actual concentration from the mechanical mixtures of NiS and NiSO₄.6H₂O.

Results and Discussion

Figure 1 (top) shows an experimental schematic of an X-ray Absorption experiment. The bottom picture in Figure 1 is an actual experimental set-up at beamline X11a at the National Synchrotron Light Source (NSLS).

Figure 2 shows the normalized nickel K-edge XANES spectra for all the nickel model reference compounds measured in this investigation, nickel oxide (NiO), nickel chloride (NiCl₂), nickel carbonate (NiCO₃), nickel sulfate (NiSO₄.6H₂O), pentlandite ((Fe,Ni)₉S₈), nickel sulfide (NiS), nickel sulfide (NiS₂), nickel subsulfide (Ni₃S₂), as well as the three air filter samples that were measured. Each of the model reference compounds was tested as an appropriate component of the three unknown air filter samples. It was found that the best fits included the species, NiO, NiS and NiSO₄.6H₂O for all three unknown air filter samples. Other fits were attempted with different sets of components but none agreed with the data based on values of the reduced chi square (χ^2) coefficient. The total and component fits of the air filter spectra are shown in Figure 3. The poorest fit quality was with filter 724, which had the lowest nickel concentration.

Table 3 lists the amounts of nickel species determined for the unknown air filter samples measured using Ni K-edge XANES with least squares linear combination analysis. Table 3 also shows the results of fits to the interior dust sample (lb50457822) of organic sulfur species using sulfur K-edge XANES spectroscopy, discussed further below.

Figure 9 is presented to illustrate the difference in the XANES spectra of nickel sulfide and nickel subsulfide (top). There is a small 1 eV difference in the inflection point of the main edge as shown in the bottom plot and changes in shapes of some of the other features in the post-edge region.

Sulfur K-edge XANES

Sulfur K-edge XANES spectra of sulfur standard compounds and unknown air filter samples are shown in Figure 4. The air filter samples all show large peaks consistent with the presence of sulfate, as demonstrated with the nickel sulfate reference compound. Filter samples 811 and 812 also show small peaks at 2471.5 eV that correspond to a sulfide peak (Figure 5). The other air filter samples do not have peaks in the sulfide region. At these low concentrations of sulfide it is difficult to assign these peaks to either sulfide or subsulfide. As shown by drop lines in Figure 5, nickel sulfide and nickel subsulfide have a small 0.2 eV difference in their S K-edge peak maxima. The peak position of the sulfide peak in filters 811 and 812 corresponds more closely to that of sulfide.
The lab bottle sample (50457822) spectrum has peak maxima at 2482.8 eV (sulfate) and at 2473.6 eV. No sulfide appears to be present but the peak at 2473.6 most likely corresponds to an organic sulfur species. This sample was compared to existing data collected for various organic sulfur species with the result of fitting shown in Table 3. As shown in Table 3, the interior dust sample (lb50457822) is adequately fit with nickel sulfate and either thiol, organic sulfide, disulfide or thiophene. It cannot be fit with nickel sulfide or subsulfide and based on the derivative spectrum in Figure 7 (bottom), which is more sensitive to small inflections and changes in peak shape, there is no indication of the presence of nickel subsulfide. The fits of the sulfur XANES indicate sulfate and the organic species are approximately both present at 50% levels.

Figure 6 (top) shows a series of S K-edge XANES spectra of mechanical mixtures of nickel sulfide and nickel sulfate. Actual concentrations of these mixtures are listed in Table 4. The bottom plot in Figure 6 shows the deviations of the linear combination fitted mechanical mixtures from the actual concentrations used in the mixtures. The solid black lines represent the actual concentrations and the red and blue lines are the fitted values of nickel sulfate and nickel sulfide, respectively. In order to try and improve on the predicted linear combination fit percentage values, the mixtures were used to develop a calibration curve for the amount of sulfide based on the peak at 2471.5 eV (Figure 8). The calibration curve was linear at low concentrations of sulfide. Percentage values of the amount of sulfide from linear combination fitting and a curve based on the sulfide peak height gave values for filter 811 of 14.0% and 17.8% and for filter 812 of 8.1% and 14.2%, respectively. Based on previous analyses, we assume an error of 3% on these low concentration values.

Conclusions

Fitting of the Ni K-edge XANES spectra (Table 3) result in the following speciation results;

filter 724: 23% NiO, 0% NiS, 77% NiSO₄.6H₂O

filter 811: 30% NiO, 20% NiS, 50% NiSO₄.6H₂O

filter 812: 20% NiO, 14% NiS, 66% NiSO₄.6H₂O

Uncertainty values are at the $\pm 3\%$ level.

The remaining samples did not arrive at the NSLS in time for measurement but are currently at the beamline (X11A) and will be measured sometime after U.S. Thanksgiving.

The sulfur K-edge measurements indicate that, except for sample 811, 812, and the lab bottle sample (#50457822), the unknown air filters contain only sulfur in the sulfate form (Table 4). Samples 811 and 812 also contain sulfur in the sulfide form. From a series of mechanical mixtures, we were able to obtain two independent determinations of the amount of sulfide (Table 4). The averaged values for these are,

filter 811: 16% sulfide, 84% sulfate

filter 812: 11% sulfide, 89% sulfate

Uncertainty values are at the $\pm 3\%$ level.

It should be noted that sulfide concentrations determined from the Ni K-edge XANES and S K-edge XANES are in close agreement, including the 0% NiS fit value in filter 724.

References

- Lytle, F.W.; Sandstrom, D.R.; Marques, E.C.; Wong, J.; Spiro, C.L.; Huffman, G.P.; Huggins, F.E.; Measurement of soft x-ray absorption spectra with a fluorescent ion chamber detector, *Nucl. Instru. Meth.*, **226**, 542 (1984)
- McMaster, W.H.; Del Grande, N.K.; Mallett, J.H.; Hubbell, J.H.; Compilation of X-ray Cross Sections, Lawrence Livermore National Laboratory Report, UCRL-50174 section II rev. 1 (1969)
- O'Day, P.A.; Rivera, Jr., N.; Root, R.; Carroll, S.A.; X-ray absorption spectroscopic study of Fe reference compounds for the analysis of natural sediments. *Amer. Mineral.*, 89, 572 (2004)
- Ravel, B. and Newville, M., Athena, Artemis, Hephaestus: B., J. Synchrotron Rad., 12:4, pp. 537-541 (2005)
- Ressler, T.; Wong, J.; Roos, J.; Smith, I.L., Quantitative speciation of Mn-bearing particulates emitted from autos burning (methylcyclopentadienyl)manganese tricarbonyl-added gasolines using XANES spectroscopy. *Environ. Sci. & Technol.* 34, 950, (2000)
- Solomon, D.; Lehmann; Martinez, C.E.; Sulfur K-edge XANES spectroscopy as a tool for understanding sulfur dynamics in soil organic matter. *Soil Sci Soc. Am. J.*, 67, (2003)
- Stern, E,.A. and Heald, S.M., *in* Handbook on synchrotron Radiation, ed. E.E. Koch (North-Holland, Amsterdam, 1983), Vol. **1**, chap. 10
- Webb, S., SixPack v.0.53, http://www.stanford.edu/~swebb, (2002)

pure reference compounds (Ni K-edge)					
sample	formula	# scans	detection mode source		
nickel sulfide	NiS	2	transmission	Alfa Aesar	
nickel metal	Ni	2	transmission	NiPERA repository	
nickel	NiCO ₃	2	transmission	Alfa Aesar	
carbonate					
nickel	Ni_3S_2	2	transmission	NiPERA repository	
subsulfide					
nickel sulfate	NiSO ₄ .6H ₂ O	2	transmission	Alfa Aesar	
nickel	NiCO ₃	2	transmission	Alfa Aesar	
carbonate					
nickel	NiCl ₂	2	transmission	Alfa Aesar	
chloride					
nickel oxide	NiO	2	transmission	Sigma-Aldrich	
unknown samples					
sample	form	# scans	detection mode	source	
2004040812	air filter	9	fluorescence	MI5007-JUL05	
2004040811	air filter	7	fluorescence	MI5021-SEP05	
2004040724	air filter	11	fluorescence	MI5007-JUL05	

Table 1. Description of samples measured at the Ni K-edge at Beamline X11A (NSLS)

pure reference compounds (S K-edge)							
sample	formula	# scans	detection mode	source			
nickel sulfid	e NiS	2	electron yield	Alfa Aesar			
elemental	S	2	electron yield	NiPERA repository			
sulfur							
nickel sulfat	e NiSO ₄ .6H ₂ O	2	electron yield	Alfa Aesar			
sodium sulfi	te Na ₂ SO ₃	2	electron yield	Alfa Aesar			
sodium	Na ₂ S ₂ O ₃	2	electron yield	Alfa Aesar			
thiosulfate							
unknown samples							
sample	form	# scans	detection mode	source			
filter306	air filter	4	electron yield	May 1, 2005			
	station 15525			filter lot 002283			
filter812	air filter	6	electron yield	MI5007-JUL05			
	2004040812						
filter811	air filter	3	electron yield	MI5021-SEP05			
	2004040811						
filter724	er724 air filter		electron yield	MI5007-JUL05			
	2004040724						
filter722	air filter	2	electron yield	MI5021-SEP05			
	2004040722						
lab bottle	powder	2	electron yield	MI5009-APR05			

Table 2. Description of samples measured at the S K-edge at the CSRF DCM (SRC)

sample	LC fits						
	(mole %)						
	NIO NIS NISO4 NISO4/ NISO4/ NISO4/ NISO4/ NISO4/					NISO ₄ /	
				SH	R- S -R	R- S-S -R	cyclic S
				(alkyl)	(alkyl)	(disulfide)	(thiophene)
nickel K-edge							
unknown	23	0	77				
(filter 724)				_			
unknown	30	20	50				
(filter 811)				-	-		
unknown	20	14	66				
(filter 812)				-			
sulfur K-edge							
lab bottle				49/51	53/47	45/55	46/54
MI5009-APR05							

Table 3. Ni K-edge XANES spectra of unknown air filter samples with linear combination (LC) fitted values.

Table 4. S K-edge XANES spectra of mechanical mixtures of NiS and NiSO₄.6H₂O with linear combination (LC) fitted values. Fitted percentages are also given for filters 811 and 812, which showed intensity at the sulfide peak. Linear regression values were determined only at low sulfide concentration. The sulfide peak occurs at 2471.5 eV and the sulfate peak at 2482.8 eV.

sample	composition		normalized	LC fits		linear	
	(mo	ole %)	peak	(mole %)		regression fit	
			height			(mole %)	
	NiS	NiSO ₄		NiS	NiSO ₄	NiS	NiSO ₄
NiSO4	0	100	n/a	n/a	n/a	0	100
10NiS	10.3	89.7	0.03	9.5	90.5	12.0	88.0
20NiS	18.5	81.5	0.06	13.9	86.1	17.1	82.9
30NiS	27.2	72.8	0.11	19.6	80.4	25.7	74.3
40NiS	34.7	65.3	0.17	26.3	73.1	35.9	64.1
50NiS	42.5	57.5	0.25	32.6	67.4	n/a	n/a
60NiS	49.6	50.4	0.24	32.1	67.9	n/a	n/a
70NiS	56.1	43.9	0.34	48.4	51.6	n/a	n/a
80NiS	62.7	37.3	0.32	48.6	51.4	n/a	n/a
90niS	68.6	31.4	0.69	75.7	24.3	n/a	n/a
NiS	100	0	n/a	n/a	n/a	100	0
unknown samples							
unknown	n/a	n/a	0.064	14.0	86.0	17.8	82.2
(filter 811)		-					
unknown (filter 812)	n/a	n/a	0.043	8.1	91.9	14.2	85.8

b

Figure 1. Schematic setup of an x-ray absorption experiment (a) and picture of the experimental arrangement at X11A with the x-ray beam entering from the right.

Figure 2. Pre-edge subtracted and normalized XANES spectra of nickel reference compounds and air filters measured at the Ni K-edge.

Figure 3. Least squares linear combination XANES fits of the three air filter samples (filter 811 (a), filter 812 (b) and filter 724 (c)) measured at the Ni K-edge. The black line is the measured XANES spectrum, the red dashed line is the total fit and the other lines represent the component percentages (Table 3) of NiO, NiS and NiSO_{4.6}H₂O.

Figure 4. S K-edge XANES spectra of reference and unknown air filter samples.

Figure 5. S K-edge XANES spectra showing in closer detail the region before the main sulfate peak of the unknown aerosol samples on air filters. Filters 811 (blue) and 812 (cyan) show small peaks that correspond to either subsulfide or sulfide.

Figure 6. Sulfur K-edge XANES of a series of mechanical mixtures of NiS and NiSO₄.6H₂O, actual concentrations are listed in Table 4 (top) and, the linear combination fit deviations (red and blue lines) from the actual concentration values of NiS and NiSO₄.6H₂O (bottom).

Figure 7. Comparison of the sulfur K-edge XANES spectra of the unknown sample lb50457822 to various organic sulfur species (top), the first derivative absorption spectra of various sulfur-containing species showing the difference between Ni_3S_2 and the sample.

Figure 8. Linear regression line (y=6.9213 + 170.31x) of the sulfide peak height and actual sulfide concentration for a series of mechanical mixtures of NiS and NiSO₄.6H₂O. The relationship was not linear at high concentrations of sulfide.

Figure 9. Normalized Ni K-edge XANES Spectra of nickel sulfide (NiS) and nickel subsulfide (Ni₃S₂) (top). The bottom plot shows the corresponding first derivative absorbance spectra, small differences can be noted in the position of the edge and certain post edge features in the spectrum.

Report on nickel (Ni) speciation in particulate matter collected on filters

Presented to

Prepared by

Dr. Marc Lamoureux EnviroAnalytix Services P.O. Box 32, Lakeside, NS B3T 1M6 (902) 489-5405

October 5th, 2005

Abstract

The Ni speciation in particulate matter (PM) collected on filters was determined using xray absorption fine structure (XAFS) spectroscopy analysis. The XAFS spectra of PM samples were analyzed using Principal Component Analysis and Target Transformation to identify the most probable Ni species in the samples. The XAFS spectra were fitted using a Least-Squares Regression analysis procedure using a combination of most probable Ni species, which generally included NiSO₄, NiO green, and Ni metal. The calculated, average oxidation state of Ni species in the PM samples is nearly +2. The DELTA E fit results were in good agreement with the experimentally determined DELTA E for all samples. Fit and weight percentage were determined for the relevant Ni species, i.e., NiSO₄, NiO green, and Ni metal. The presence of NiO green and NiSO₄ was found in all samples by inspecting the Fourier Transform of the kweighted XAFS spectra of each sample. Also, FT analysis showed that Ni₃S₂ was absent from all samples.

Table of Contents

Abstract
Introduction and XAFS Theory pg 1
Experimental and Materials, and Least-squares Regression
Criteria for Least-squares fitting pg 4
Results and Discussion
Conclusions
Literature Cited pg 9
Appendix A - XAFS Spectra of standards, blank filter and PM on filter
Appendix B - Example of PCA and Target Transformation
Appendix C - Target Transformation and Least-Squares Regression fit results pg 15
Appendix D - Summary of results from Least Squares Regression Analysis (% Fit) pg 23
Appendix E - DELTA E - edge energy difference
Appendix F - Fourier Transform of XAFS spectra

Introduction

The following report is prepared for Ontario Ministry of the Environment by Dr. Marc Lamoureux (ENVIROANALYTIX SERVICES Ltd.). This report is for work done up to October 1st, 2005.

The report consists of XAFS spectra of 7 samples, 1 filter blank, 7 Ni standards for the analysis of nickel species associated with particulate matter collected on membrane filters (glass fibre or quartz) using X-Ray Absorption Fine Structure (XAFS) Spectroscopy. All filter samples and blank were provided by the Ontario Ministry of the Environment (MOE) or their associates. The purpose of this work is to determine the speciation of nickel in particulate matter collected on filters.

XAFS theory

The following is a brief description of the operating principle of X-ray Absorption Fine Structure Spectroscopy (XAFS). A more extensive review of the theory of XAFS can be found in the excellent book edited by D.C. Koningsberger, and R. Prins¹. Figure 1 shows the XAFS spectrum of some Mn compounds. The qualitative description that follows using Fig. 1 applies equally to Ni XAFS spectra. Each XAFS spectrum (see Fig. 1) represents the x-ray absorption signal (y-axis) as a function of the incident x-ray energy (x-axis). The absorption edge corresponds to the absorption of an x-ray photon by a core electron from the target analyte. This is a quantized event (quantum mechanic) and thus the edge energy is characteristic to the element of interest (i.e., no other elements can absorb that photon). The intensity of the absorption process (edge jump) is proportional to the concentration of the target element in the sample (this is analogous to Beer's Law in absorption spectroscopy). The oscillations observed about the x-ray absorption signal (see Figure 1) are referred to as the "x-ray absorption fine structure". The fine structures together with the absorption edge represent a fingerprint of an individual species. Thus, the combination of XAFS spectrum from appropriate standards (those that are present in the unknown sample) allows one to replicate the XAFS spectrum of an unknown sample. Figure 1 is a typical representation of an XAFS spectrum, which shows a plot of the normalized absorption (a.u.) spectrum for any samples or standards vs x-ray energy (KeV).

For this work, the region of interest for the Least-Squares Regression analysis (the fitting region) is the X-ray Absorption Near Edge Structure (XANES) and it includes the region just before the absorption edge, the absorption edge, and approximately the first 130 eV after the absorption edge. As well, the Extended X-Ray Absorption Fine Structure (EXAFS) for this work comprised the region that extended about 500 eV after the Ni K-edge (8.333 KeV). The presence of Cu (Cu K-edge 8.979 KeV) in the particulate matter prevented the possibility of measuring the EXAFS beyond 500 eV.

Experimental

All XAFS spectra were measured at the Stanford Synchrotron Radiation Laboratory (SSRL) in California. XAFS spectra were collected in fluorescence mode using SSRL beam line 10-2. Beam line 10-2 has insertion devices (wigglers) and provide therefore more photon flux (thus more sensitivity) than bending magnet only beam line (e.g., beam line 2-3). The monochromator on beam line 10-2 was de-tuned by 50% to reject secondary harmonics. The dimension of the x-ray beam that irradiated the surface of the sample on beam line 10-2 was about 1.0 mm² (0.1 x 10 mm). The detectors used for the data collection was a solid state detector, a 30-element Ge detector. The Ge detector is more sensitive than the Lytle detector (gas ionization detector), thus the signal is more intense when measured with the Ge detector. The XAFS spectra for all Ni standards, blank and samples were measured with a Ge detector. All spectra were referenced (energy calibration) to a Ni foil located between 11 and 12 gas ionization chambers. All blank and sample filters were fitted individually on an sample holder (made of aluminium, 1 mm thickness with a 5 x 20 mm window) using double sided sticky tape (only the sample edges were taped). Blank and sample filters were covered with a piece of thin x-ray film (6 µm thickness polypropylene film), and the sample holder was then fitted on a cryostat sample rod. The sample rod was positioned at a 45° angle from the incident x-ray beam and the Ge-detector. The cryostat was maintained to 100 K to minimize both the thermal noise and possible radiation damage to the sample.

XAFS spectra were collected using SSRL data collection software XAS Collect. XAFS data reduction was done using EXAFSPAK (written by Graham George, SSRL). The Principal Component Analysis (PCA) and Least-Squares Regression analysis were carried out using the software WinXAS v3.1 (written by Thornsten Ressler). All Ni standards and PM samples were treated the same way during data reduction. Specifically, all spectra were inspected and weak or bad Ge-detector channels were removed, spectrum were then averaged and energy calibrated (with respect to the Ni foil K-edge energy - 8.333 KeV), blank subtracted, all spectra were clipped to keep the XAFS signal between 8.24 and 8.80 KeV, post-edge background was removed using a cubic spline and normalized to a common energy point (8.350 KeV). XAFS spectra were fitted by combining XAFS signals from standards using the linear least-squares regression fitting algorithm in WinXAS. The Least-Squares Regression fit allowed both the concentration and the position of the absorption edge to be automatically modified at each successive iteration until no further fit improvement was achieved. Prior to fitting unknown samples with standards, all samples were subjected to Principal Component Analysis (PCA) to identify the most probable components in the mixture. PCA attempts to determine how many different Ni reference compounds or standards are needed to fit the samples adequately. Another feature of PCA is Target Transformation, which attempts to determine which Ni standards are probable species in the unknown sample. More details on the principle and use of PCA and Target Transformation can be obtained from Ref. 2 and 3.

Materials

The suite of nickel standards used for the linear least square fitting of the unknown samples includes a series of oxides-hydroxides (NiO green, NiO black, Ni(OH)₂), sulfur-containing nickel species (NiS, NiS₂, Ni₃S₂, and NiSO₄•6H₂O), and nickel metal (as a foil).

The choice of the above-mentioned suite of Ni compounds is based on previous work done by this researcher on similar samples for the benefit of MOE and in the course of his own research program at Saint Mary's University. Many anthropogenic activities such as coal power plants and smelters can be a significant source of Ni sulfate and sulfides. Ni oxides (NiO green and black) and hydroxides and be naturally occurring or man-made. The possibility that some wind blown dust could be collected by the PM-10 samplers and consequently that a Nicontaining silicate compound would be among the possible Ni species in the particulate matter could not be tested because a well defined Ni-silicates was not available at the time of analysis.

The sample ID, such as "ni_coppercliff1", was constructed to reflect the existing sample labeling at MOE (or their associates). The letter "ni" indicates that Ni was the targeted metal for x-ray absorption analysis. The series of letters and number after the underscore identifies the sampling location (i.e., copper cliff), and the number (e.g.1) was extracted from the sample label as provided by MOE.

Criteria for successful Least-Squares Regression analysis

For all PM samples, PCA analysis showed that the first 3 Principal Components were enough to fit 95% or more of all sample XAFS spectra. Target Transformation showed that $NiSO_4$ hexahydrate (hexahydrate will be omitted from hereon), NiO green (abbreviated NiOgrn from hereon), and Ni(OH)₂ were present in most samples at varying concentration.

In order to achieve a meaningful, successful fit (i.e., a fit that makes sense from a physicochemical point of view), one needs to adopt a set of rules (criteria) when performing PCA and Least-squares Regression analysis. Failure to do this or to observe the adopted rules can result into a very good fit that is meaningless. In other words, it is possible to combine linearly XAFS spectra of standards such that it can fit the XAFS spectrum of an unknown even though the analyte standards are known not to be present (as ascertained by other analytical methods) in the sample! This is equivalent to using geometry to piece together geometric forms to represent another, different geometric form, even though the geometric forms used initially have no relationship with the targeted geometric form.

The following are the rules that were imposed onto the fitting procedure:

- 1. All fits began with NiSO₄, NiOgrn, and Ni(OH)₂ as indicated by PCA and Target Transformation, and then refined as required. The fitting procedure is an iterative process that attempts to minimize the residual (i.e., what is left unfitted) and (CHI)'2 ((the sum of the deviation squared between the fit and experimental spectra) values. In general, the best fit has the smallest residual and CHI'2 values.
- 2. The fit parameters are concentration and edge energy shift. Valid concentration values had to be between 0 and 100%. A fit resulting in one or more standards having a negative concentration indicated that these Ni standards were not probable Ni species in the unknown sample under investigation and, therefore, were removed from future fit iterations of that unknown sample. Nickel standards that yielded a concentration value of 5% or less were also removed from future fit iterations. The rational is that the

estimated noise level is in the order of 5% of the normalized XAFS signal, and thus standards with a concentration value of 5% or less can easily be confused with noise. Variation in edge energy (E0 shift) was constrained by \pm 0.0034 KeV, which corresponds to an average deviation of \pm 0.5 Ni oxidation state for Ni species having an oxidation state between 0 (Ni metal) and +2 (NiSO₄, Ni(OH)₂, and NiO). It was estimated that the error in the determination of the edge energy (after energy calibration) of any Ni standard was less than \pm 0.0034 KeV, and that the variation in edge energy for a given oxidation state (due to variation in ligand or coordinating atoms) was also less than \pm 0.0034 KeV. Edge energy shift greater than \pm 0.0034 KeV would be equivalent to practicing geometry with XAFS spectra of standards.

- 3. Fit iterations were continued until the residual from the energy edge (~ 8.33 KeV) to the end of the energy range (8.80 KeV) was 5% or less, 5% being the estimated noise level for most unknown samples.
- 4. If two fits generated using a different combination of Ni standards were nearly identical (i.e., visually, and residual and CHI'2 values), the fit that reproduced the energy edge (the rising portion or energy step of the XAFS signal) the most accurately was deemed the best fit. The edge energy of the fit spectra was compared with the edge energy of the experimental spectra and good agreement had to be verified. If this did not resolve which is the best fit, the one with the smallest sum of edge energy shift of all Ni species present was then deemed the best fit.
- 5. The inclusion of an additional Ni compound in the Least-Squares Regression fit is justified only if it reduces the residual and the (CHI)'2 values of the fit by 10% or more. The rational for this is that the noise itself is estimated at 5% and consequently, inclusion of another Ni compound must at least reduce the residual and the (CHI)'2 values by the noise level percentage. This would be analogous to adopting a 95% confidence level (2σ) for the fit.
- 6. Visual inspection that the most important features and general shape of the targeted XAFS spectrum are reproduced by the fit spectrum.

Results and Discussion

The normalized XAFS spectra (with offsets for presentation purpose) of all nickel standards used for this work are shown in Figs. 2a and 2b (Appendix A), whereas Fig.3 (Appendix A) shows the normalized XAFS spectra (with offsets for presentation purpose) for the filter blank and sample PM on filter. Figure 3 also shows that Ni concentration as an impurity in the filter substrate is small, but was never-the-less removed from all PM samples (thus blank corrected). The XAFS spectrum of NiO green and NiO black were indistinguishable and, therefore, results for NiO green only are reported from hereon. Similarly, the XAFS spectrum of Ni sub-sulfides (i.e. NiS, NiS₂ and Ni₃S₂) were indistinguishable from each other and, therefore, results for Ni₃S₂ only are reported from hereon. Sample homogeneity was tested by analyzing two sub-samples of the same filter and results were identical for all samples within experimental error. On occasion, significant diffraction lines (i.e., intense) were observed on certain channels of the Ge detector due to the presence of one or more Ni-containing crystalline compounds. This was remedied by repositioning the sample such that the incident x-ray beam would not interact with any significant amount of the Ni-containing crystalline compound(s). If this did not correct the problem, then the detector channels that were affected were simply removed during the data reduction such that these channels would not be part of the average XAFS spectrum used for the rest of the analysis.

Figures 4A and 4B (Appendix B) show typical outputs of a Principal Component Analysis (PCA). Figure 4A shows that spectrum No. 5 (Falco4) is not completely reconstructed when using two components whereas Figure 4B shows that 3 components are sufficient to reproduce more than 95% of spectrum No. 5. Principal Component Analysis showed that 3 principal components was sufficient to reconstruct 95% or more of every PM sample XAFS measured during this work. Consequently, it is expected that no more than three Ni standards are required to reconstruct any of the unknown samples. Figure 5 shows examples of Target Transformation. The Target Transformation of Ni₃S₂ was unsuccessful (Fig 5A), i.e., the Ni₃S₂ XAFS (red line) cannot be recovered by features in unknown samples (blue line) and, consequently, Ni₃S₂ is not a probable candidate for the Least-Squares Regression analysis. On the other hand, Fig. 5B shows that Target Transformation of NiO green was successful as the NiO green XAFS spectrum (red line) was nearly completely recovered by features in unknown samples candidate for the Least-Squares Regression analysis.

Appendix C shows Target Transformation results and Least-Squares Regression fits for the seven samples measured in this work. The Target Transformation section begins with a list of sample filenames (i.e. samples measured during this work), followed by the name of the Ni standard onto which Target Transformation is performed, and finally a numerical output (R-value), which is an indicator of the degree of success of Target Transformation. The Ni standard with the smallest Target Transformation R-value has the highest probability of being present in the set of seven samples, the Ni standard with the second smallest R-value would be the second most probable Ni species to be present in the set and so forth. The Target Transformation results show that NiO green has the lowest R-value (1.38, in bold) and thus has the highest

probability of being present in the set of samples, followed by NiSO₄ (1.52, in bold) and Ni(OH)₂ (1.85, in bold). One need to exercise caution when using Target Transformation because Ni standards with similar features tend to produced similar R-values. This is the case for NiO green and Ni(OH)₂. Least-squares fitting that included both NiO green and Ni(OH)₂ did not yield a successful fit, i.e., either large energy shift or negative concentration (or both) were obtained for Ni(OH)₂. The inclusion of Ni sub-sulfides (NiS, NiS₂, or Ni₃S₂) in the least-squares fitting procedure always resulted in either large energy shift or negative concentration (or both) for these Ni species. It was found that Ni metal could be included to four samples (coppercliff2, falco4, garson6, skead7) to generate a successful fit. In agreement with the Target Transformation results, Ni metal had a low probability of being presence in the set of seven samples, i.e. it is only found in 4 out of 7 samples and it is always the Ni component with the smallest weight percentage.

The fit results for the seven samples analyzed in this work follows the Target Transformation section. Each least-squares fit result shows the sample filename, followed by the "(CHI)'2" and "Residual" results, which are indicators of the guality of the fit. Both (CHI)'2 and Residual results are to be minimized by successive fit iterations until no further improvement can be obtained with additional fit iterations. The name of each Ni standard used in the fit process is listed together with the corresponding fit % result (called "partial c") and energy shift (called "E0 shift). The measured spectrum (in red) and the fit spectrum (in blue) are shown together with the XAFS spectrum of each Ni standard (in magenta) used in the fit process. The residual (the unfitted XAFS signal) is shown in green below each measured and fit spectra. The Absorption Correction section for LC XANES Fit shows the partial concentration (c'), the xray mass attenuation coefficient (mue), and the weight % of the Ni standard of interest in the sample. The fit percentage obtained by Least-Squares Regression analysis is not necessarily equal to the weight percentage of the Ni species in the sample. One can convert from fit percentage to weight percentage using the x-ray mass attenuation coefficient (μ/ρ) of each Ni species of interest. The x-ray mass attenuation coefficient for a given Ni species can be determined experimentally if the thickness of the sample is known or it can be calculated using tabulated values of the mass attenuation coefficient of the elements⁶ and the weight fraction of each element in the Ni compound of interest. Table 1 (Appendix D) shows the fit% results, the calculated x-ray mass attenuation coefficient for different Ni species found in particulate matter, and the corresponding weight % results for all PM samples.

Table 2 (Appendix E) shows the Ni K-edge energy of the Ni standards and samples analyzed in this work. The Ni K-edge energy was determined from the experimentally measured and fitted XAFS spectra. Table 2 shows the DELTA E, which is the edge energy, as measured from the first maximum in the first derivative of the rising portion of the energy edge of each sample, minus the edge energy of Ni metal (Ni K-edge is at 8.333 KeV). The Ni K-edge energy for a given Ni oxidation state (e.g., +2) is sensitive to its chemical environment, more specifically the number and type of coordinating atoms. Table 2 shows the average DELTA E and the corresponding standard deviation of both the experimentally measured and fitted XAFS spectra. All DELTA E calculated from the first derivative of the sample spectra are in good agreement with those determined from fit spectra. This is consistent with the fact that samples with smallest DELTA E (falco3 and falco4) have the largest concentration of NiO green (DELTA E is 10.5 eV) whereas samples with largest DELTA E (garson6 and skead7) have the largest concentration

of NiSO₄ (DELTA E is 12.6 eV). The average DELTA E determined from both experimentally and fitted data indicates that the average Ni oxidation state in all samples is essentially +2. The impact Ni metal has on the average oxidation state is small either because the Ni metal fit % in the sample is small (e.g. skead7) or because the DELTA E value for Ni metal is compensated by a large contribution of NiSO₄, which increases the DELTA E value.

Performing a Fourier Transform (FT) on a k-weighted XAFS spectrum (k is the wavenumber and is proportional to square root of DELTA E) converts the information from an energy dependent space to a radial distance dependent space. In other words, the FT procedure on an XAFS spectrum yields a pseudo-radial distribution of near neighbour atoms around the target analyte (the x-ray excited analyte). Figure 6 (Appendix F) shows the XAFS Fourier Transform of some Ni standards and the 7 samples analyzed in this work. The peaks in Figure 7 represent coordination shells where near neighbour atoms are located. These shells have not been phase-corrected and therefore their true distance from the origin is about 0.2 to 0.5 Å further away. The distance between these shells and the origin (the x-ray absorbing Ni is at the origin - distance 0 Å) can often represent bond length between the target analyte and a coordinating atom or ligand.

A few important shells in Figure 7 will be discussed. The first one is at about 1.6 Å and is present in both NiSO₄ and NiO green. The second shell of importance is at about 2.57 Å and is present only in NiO, and the peak intensity ratio of shell 2.57 Å to shell 1.6 Å is about 2.9. The presence of NiO is clearly observable in the FT of all samples due to the presence of the double peaks at 1.6 and 2.57 Å (e.g. sample "falco3"). The presence of NiSO₄ causes the intensity of the shell at 1.6 Å to increase such that the peak intensity ratio between shell 2.57 and 1.6 Å decreases (not linearly) as the concentration of NiSO₄ increases. Hence, the presence of NiSO₄ can be identified in all samples by observing a decrease in the peak intensity ratio between shell 2.57 and 1.6 Å. The Fourier Transform of the Ni₃S₂ XAFS spectrum shows only one important shell at about 2.00 Å. This shell was not observed in any of the samples analyzed in this work. This shell would be located, if present, in the valley between the two above mentioned shells at about 1.6 and 2.57 Å, and any appreciable amount (more than 10% in the fit) of Ni₃S₂ would tend to make the valley disappear. Therefore, it is unlikely that Ni_3S_2 is present in any of the samples analyzed in this work. This result is consistent with the fact that Target Transformation did not identify Ni₃S₂ as a candidate having a high probability of being present in any of the samples and the Least-Square Regression fitting procedure gave unreasonable fit results (e.g., negative concentration) for Ni₃S₂. The FT of the Ni metal XAFS spectrum shows an intense shell at about 2.18 Å. It is difficult to ascertain the presence of Ni metal using the FT results because of the lower abundance of Ni metal in the samples. It should noted that the shell peak intensity in the FT pseudo-radial distribution depends on many factors such as the number of atoms inside the shell, the x-ray scattering power of the atoms in the shell, bond length, etc.

In summary, the XAFS analysis shows that all seven samples have an average Ni oxidation state of +2, that the most important Ni species are $NiSO_4$ and NiO, with occasionally a minor contribution of Ni metal.

Conclusions

The Ni speciation in particulate matter (PM) collected on filters was determined using xray absorption fine structure (XAFS) spectroscopy analysis. The XAFS spectra of PM samples were analyzed using Principal Component Analysis and Target Transformation to identify the most probable Ni species in the samples. The XAFS spectra were fitted using a Least-Squares Regression analysis procedure using a combination of most probable Ni species, which generally included NiSO₄, NiO green, and Ni metal. The calculated, average oxidation state of Ni species in the PM samples is nearly +2. The DELTA E fit results were in good agreement with the experimentally determined DELTA E for all samples. Fit and weight percentage were determined for the relevant Ni species, i.e., NiSO₄, NiO green, and Ni metal. The presence of NiO green and NiSO₄ was found in all samples by inspecting the Fourier Transform of the kweighted XAFS spectra of each sample. Also, FT analysis showed that Ni₃S₂ was absent from all samples. The work herein demonstrates the ability of XAFS to provide qualitative and quantitative Ni speciation in airborne particulate matter.

Finally, the results reported herein are based on the assumption that sample integrity has been preserved from time of sampling to time of XAFS analysis. Also, the results also depend on the availability of reference standards at the time of analysis and the analytical concentration results provided by MOE. EnviroAnalytix Services Ltd. (c/o Dr. Marc Lamoureux) cannot guarantee the exactness of the reported results because of the lack of certified reference materials (CRM) with certified concentration values for specific Ni species (and not just total Ni concentration). There are no commercial CRMs for metal speciation work that exist at this time. However, the XAFS analyses, including the data reduction and fitting procedure used by Dr. Lamoureux, have been carried out using standard XAFS analysis procedure ^{1, 2, 4, 5} and all spectra have consistently been analyzed using the same protocol.

Than Jamony

Dr. Marc Lamoureux EnviroAnalytix Services Ltd.

Literature Cited

- 1. D.C. Koningsberger, and R. Prins (1988), "X-ray Absorption Spectroscopy", in Chemical Analysis 92, Wiley, New-York.
- 2. Thorsten Ressler, Joe Wong, Joseph Roos, and Isaac L. Smith, (2000), "Quantitative Speciation of Mn-Bearing Particulates Emitted from Autos Burning (Methylcyclopentadienyl)nickel Tricarbonyl-Added Gasolines Using XANES Spectroscopy", *Environmental Science & Technology* **34**, 950-958.
- 3. Malinowski, E.R. (1991), *Factor Analysis in Chemistry*, 2nd Ed. John Wiley, New York.
- 4. Marc M. Lamoureux, Melanie P. MacDermid, and Nadia Nizam, (1999), "In Situ Solid State Chemical speciation of Simulated and Real Lead-Containing Airborne Particulate Matter", *Can. J. Anal. Sc. Spectrosc.*, **44**, 41-45.
- 5. M. M. Lamoureux, J. C. Hutton, D. L. Styris, and R. L. Gordon, (1995), "Non-invasive quantitative speciation of solids by extended X-ray absorption fine structure spectroscopy", *Applied Spectroscopy* **49**, 808-812.
- 6. J. H. Hubbell and S. M. Seltzer (2005), "Tables of X-Ray Mass Attenuation Coefficients a n d M a s s E n e r g y - A b s o r p t i o n C o e f f i c i e n t s ", <u>http://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html</u>, National Institute of Standards and Technology, Gaithersburg, MD 20899, © 1989, 1990, 1996 copyright by the U.S. Secretary of Commerce on behalf of the United States of America.

Figure 1. Typical XAFS spectra of some manganese compounds.

Page 11 of 25

Appendix B - Example of PCA and Target Transformation

Figure 4. Example of PCA output.

Appendix C - Target Transformation and Least-Squares Regression fit results

Principal Components Analysis - Results

Reference files (grid: 300 dp): File # 1 : ni_travers5-blk-n-clip.dat File # 2 : ni_coppercliff1-blk-n-clip.dat File # 3 : ni_coppercliff2-blk-n-clip.dat File # 4 : ni_falco3-blk-n-clip.dat File # 5 : ni_falco4-blk-n-clip.dat File # 6 : ni_garson6-blk-n-clip.dat File # 7 : ni_skead7-blk-n-clip.dat

Target Transformation of ni3s2-n-clip.dat Target Transformation R-value: 2.42858 %

Target Transformation of ni-n-clip.dat Target Transformation R-value: 2.95358 %

Target Transformation of niogrn-n-clip.dat Target Transformation R-value: 1.37957 %

Target Transformation ofNi(OH)2-n-clip.datTarget Transformation R-value:1.852%

Target Transformation of nis2-n-clip.dat Target Transformation R-value: 2.33202 %

Target Transformation of nis-n-clip.dat Target Transformation R-value: 2.52417 %

Target Transformation of niso4-n-clip.dat Target Transformation R-value: 1.5211 %

Absorption Correction for LC XANES Fit

Specie #1 [niso4-n-clip]: c'(1)= 0.46747 mue(1)= 147.6 c(1)= 60.514 Weight-% Specie #2 [niogrn-n-clip]: c'(2)= 0.53978 mue(2)= 261.2 c(2)= 39.486 Weight-%

Absorption Correction for LC XANES Fit

Specie #1 [niso4-n-clip]: c'(1)= 0.37855 mue(1)= 147.6 c(1)= 53.878 Weight-% Specie #2 [ni-n-clip]: c'(2)= 0.23111 mue(2)= 329.2 c(2)= 14.748 Weight-% Specie #3 [niogrn-n-clip]: c'(3)= 0.39008 mue(3)= 261.2 c(3)= 31.373 Weight-%

Specie #1 [niso4-n-clip]: c'(1)= 0.4002 mue(1)= 147.6 c(1)= 53.911 Weight-% Specie #2 [niogrn-n-clip]: c'(2)= 0.60546 mue(2)= 261.2 c(2)= 46.089 Weight-%

Absorption Correction for LC XANES Fit

Specie #1 [niso4-n-clip]: c'(1)= 0.22088 mue(1)= 147.6 c(1)= 34.89 Weight-% Specie #2 [ni-n-clip]: c'(2)= 0.23593 mue(2)= 329.4 c(2)= 16.699 Weight-% Specie #3 [niogrn-n-clip]: c'(3)= 0.54236 mue(3)= 261.2 c(3)= 48.411 Weight-%

Absorption Correction for LC XANES Fit

Specie #1 [niso4-n-clip]: c'(1)= 0.51564 mue(1)= 147.6 c(1)= 67.528 Weight-% Specie #2 [ni-n-clip]: c'(2)= 0.21763 mue(2)= 329.4 c(2)= 12.771 Weight-% Specie #3 [niogrn-n-clip]: c'(3)= 0.26623 mue(3)= 261.2 c(3)= 19.702 Weight-%

Absorption Correction for LC XANES Fit

Specie #1 [niso4-n-clip]: c'(1)= 0.47269 mue(1)= 147.61 c(1)= 62.412 Weight-% Specie #2 [ni-n-clip]: c'(2)= 0.098901 mue(2)= 329.4 c(2)= 5.8517 Weight-% Specie #3 [niogrn-n-clip]: c'(3)= 0.42533 mue(3)= 261.2 c(3)= 31.737 Weight-%

Absorption Correction for LC XANES Fit

Specie #1 [niso4-n-clip]: c'(1)= 0.54324 mue(1)= 147.6 c(1)= 67.567 Weight-% Specie #2 [niogrn-n-clip]: c'(2)= 0.46147 mue(2)= 261.2 c(2)= 32.433 Weight-% Appendix D. Summary of results from Least Squares Regression Analysis (% Fit)

		Fit %					
	% NiSO ₄	% NiO green	% Ni metal				
ni_coppercliff1	47%	54%					
ni_coppercliff12	38%	39%	23%				
ni_falco3	40%						
ni_falco4	22%	24%					
ni_garson6	52%	22%					
ni_skead7	47%	10%					
ni_travers5	54%	54% 46%					
		Weight %					
	% NiSO₄ (μ = 147.6 cm²/g)	% NiO green (µ = 261.2 cm²/g)	% Ni metal (µ = 329.4 cm²/g)				
ni_coppercliff1	61%	39%					
ni_coppercliff12	54%	31%	15%				
ni_falco3	54%	46%					
ni_falco4	35%	48%	17%				
ni_garson6	67% 20%		13%				
ni_skead7	62%	32%	6%				
ni_travers5	68%	32%					

Table 1. Least-squares fit and weight % results.

 $\boldsymbol{\mu}$ is the x-ray mass attenuation coefficient

		Experir	nental data	Fit data				
Sample ID Ni {Ox}		Delta E _{expt} (eV)	Mean Delta E (± σ)	Delta E _{fit} (eV)	Mean Delta E (± σ)			
NiO green	(+2)	10.5						
Ni(OH) ₂	(+2)	12.2	11.8 ± 1.1					
$NiSO_4 \cdot 6H_2O$	(+2)	12.6						
Ni metal	(0)	0.0						
ni_coppercliff1		11.2		11.3				
ni_coppercliff12		11.6		11.0				
ni_falco3		10.4		10.4				
ni_falco4		10.2	11.2 ± 0.7	10.6	11.5 ± 0.9			
ni_garson6		11.8		12.4				
ni_skead7		11.9		12.9				
ni_travers5		11.4		11.8				

Table 2. K-edge energy difference of Ni standards and PM samples.

"Delta E" stands for the edge energy difference between the measured edge energy of the sample and the Ni metal edge energy (8.333 KeV).

"Ni {Ox}" stands for Nickel Oxidation State.

Appendix F - Fourier Transform of XAFS spectra

Figure 6. Fourier Transform of XAFS spectra of some Ni standards and Ni-containing samples

Page 25 of 25

Metal Speciation Task Force Minutes of Follow up Meeting January 20, 2006 1 – 3:30 pm CEI Offices

Attendees:	
Inco	Bruce Conard
	Mike Dutton (by phone)
Inco Research Labs	Fred Ford
MOE	Dave McLaughlin
	Rusty Moody (by phone)
SARA Group	Glenn Ferguson
SGS Research	Rob Irwin and Chris Hamilton (by phone)
CLS	Jeff Warner (by phone)
EnviroAnalytix	Marc Lamoureux (by phone)

A summary of the key discussions that took place during the meeting is provided below, in the approximate order that they happened. A package containing the reports representing all speciation work conducted to date was circulated to the participants in advance of the conference call/meeting.

Introductions and general discussion:

Glenn Provided an introduction on behalf of the SARA Group.

Goal of the meeting was to evaluate speciation analytical work conducted to date for the Sudbury Soils Study, discuss the implications of the results, determine what conclusions (if any) can be drawn from these results, and propose any necessary follow up analytical work to reduce uncertainties going forward. Due to the results of the preliminary speciation work and clarifications required, these discussions will focus more on the speciation of the COCs within air filters and dust samples.

Glenn provided an overview of the analytical work conducted to date. A summary of this overview is attached to the current minutes. Each of the researchers was then asked to expand upon the discussion concerning their particular analyses, and provide any additional insights they may have.

Analysis by SGS Research

Rob Wanted to emphasize that the Tessier leach analyses is not designed to identify specific minerals in the sample, just the availability and mobility of the metals present within the sample. So putting nickel subsulphide

into one of the categories would be very difficult. The analyses were fairly routine, and the only surprising aspect was that some of the fractions were shifting to the organic phase likely due to the presence of a carbonaceous material observed by the SEM analyses.

Glenn This is where we observed that metal species that would normally leach out in one of the earlier sequential leaches got carried through to the later organic phase leach due to the presence of this organic material.

Bruce Was this only observed in the air filters?

Chris There was a lot more organic and nickel association in the dust samples. In the air filter samples, the particulates were very fine. The larger of the particulates were positively identified as nickel sulfide (millerite) or NiS. Anytime an oxygen was detected with millerite, it was interpreted as some kind of oxide coating on the millerite. Which raises the question of oxide and sulphate potential coatings on other nickel species, which might give a mixed spectrum resembling nickel subsulphide. However, when the subsulphide identification was made, confirmations that there was no oxygen present were made. However, as indicated by Dr. Ford, this can be difficult due to not only electron beam size, but a dynamic resolution issue.

With respect to the carbonaceous materials, there are particles within the dust samples that are very low electron back-scatter signal species, and in some cases carry nickel inclusions. SEM inspection supports the presence of nickel sulphate & possible organo-sulphates, and certainly supports an emission derivation.

Another important point is that there are four x-ray detectors pointing at the samples, so they are averaging out the effects of any local environmental x-ray detection. So if there are relief effects (*i.e.*, uneven or irregular surfaces), which is an issue with samples like this, the four detectors irons out problems related to this.

- Bruce Wants to make sure we separate discussions of air filters from dust samples, due to the different exposure pathways related to these media. In particular, he would like to see if the bioaccessibility leach is telling us the same thing as the Tessier leach analyses are telling us.
- Glenn That will likely be a separate meeting to discuss bioaccessibility, and we can bring Rob Irwin into the discussion. We can definitely separate out the dust and air filter samples in our discussions, though. We'll put dust aside for now, and focus on air.

- Bruce In the SGS analyses, for the air results we appear to find this ubiquitous carbon coating?
- Chris The coating appeared to be present in most samples. Though it is difficult to determine whether it was carbonaceous material coating sulphates, or *vice versa*.
- Bruce There is some work by Pat Rasmussen of Health Canada that indicates that sulphates can be highly bound to organic phases, so it may not be so much of a coating than an association. If there is carbon material in the air from other sources, when sulphate particles gravitate and find themselves in close proximity to one of those carbon particles they can "glom on" and become tightly bound. This might explain these observations of these "associations". Nickel sulphate is very "friendly" to carbonaceous materials. So it may be in a Tessier leach or even a bioaccessibility leach that the sulphate is so tightly bound so it cannot be coaxed off as normal sulphate, and that you really have to dissolve the organic phase before the sulphate can be freed up.
- Rob/Chris This seems to reflect their findings.
- Marc Wanted clarification on the source of the dust material.
- Glenn The dust was collected as part of an indoor dust survey conducted in residences throughout Sudbury. A high volume vacuum cleaner was used to collect dust that individuals would be exposed to as part of their daily life.
- Bruce Had an issue with the carbonaceous material being called slag or coke-like material.
- Chris Agreed that is should have been called a porous carbonaceous material.

Analysis by Dr. Fred Ford

Fred As Glenn indicated, there are limitations to the SEM method, particularly in three dimensional samples where you are looking at materials trapped in air filters. There is much more potential for interference. This is compounded by the size of the x-rays being used for the analyses, which are coarser than the particles being viewed.

> One of the things he was most concerned about in the air sample filters nominally identified to contain nickel subsulphide was the presence of an iron and a copper peak. It is highly unusual for hazelwoodite (nickel subsulphide) to partition iron and copper into the mineral structure. If you

look at mattes, hazelwoodite will have some iron and copper, but really at trace levels. Not at the peak heights observed in the x-ray spectrum from the air filters. As a result, he thought the identification of nickel subsulphide in the air filters was tentative at best.

He felt the dust sample identification was much clearer. There was not the problem with the x-ray interaction volume observed in the air filter particulates. As such, he was fairly certain of the identification of nickel subsulphide. About the only way to be 100% certain would be to dislodge the particulate into an epoxy mount, section it, polish it flat, and remove any sort of difficulty you may have from a three dimensional analyses of it.

- Bruce Would it be possible that the iron, copper, and nickel observed simultaneously on the particle, could they be mixed sulphates on another particle.
- Fred It can be any sort of combination that you could foresee. Yes.
- Bruce So you see a particle, but it doesn't seem to be conglomerate of several particles. It seems to be a single particle.
- Fred But you have no idea if it is a particle of nickel that has been coated sulphate, or some sort of sulphur. He was not sure exactly what it is.
- Chris It could be a binary particle which you are hitting at the top, and the section beneath which you cannot see is being excited as well.
- Bruce Could it be an oxide particle? Or a mixed oxide particle?

Fred Yes.

Analysis by CLS

Jeff Jeff gave a brief overview of the analytical methodology and results. Principle components analyses, coupled with linear combination fittings (least squares method), were used to fit reference spectra to a given sample spectrum. With the nickel K-edge analyses, nickel oxide and nickel sulphate were detected in all the samples. Nickel sulphide was also detected in two of the samples, but not the Copper Cliff sample. With the sulphur K-edge, there is some sulphide present in the Travers Street filters. But the dust sample shows a completely different profile than the air filters. There also appeared to be good agreement between the results of the nickel and sulphur K-edges.

- Bruce We have to be careful that if we decide to use the percentages provided in this report that they are mole percent, and not weight percent.
 Marc If there was iron and/or copper sulphide present in the sample, how would it show in your K-edge analyses?
- Jeff Though we didn't run a copper or iron sulphide standard, it would probably show up in that sulphide peak.

Analyses by Dr. Lamoureaux

Marc Essentially the technique Marc used was the same as that used by CLS. Principle component analyses, along with target transformation analyses, were used to identify the species. Essentially you compare the unknown directly with your library of standards, and you attempt to find features in the unknown that overlap with those in the standard. This increases your confidence that particular standard is a probable candidate for your subsequent fitting technique. The fitting technique was a least squares regression approach. Calibration curves were also generated to confirm identifications.

> Results of Dr. Lamoureaux's analyses indicated that nickel oxide and nickel sulphate were present in all samples. Nickel subsulphide was not observed in any of the samples. Nickel metal was observed in a small number of cases. A lot of iron and copper was detected in the all the samples. Therefore, if any of the iron is as iron sulphide, it could get convoluted with nickel sulphide. So what you see with the sulphur Kedge, you could get the fingerprint of iron sulphide being taken as nickel sulphide. He indicated that this is speculation until we do the necessary analytical work.

Bruce Thought the comment about iron sulphide was very critical. Sudbury ore is an iron sulphide ore, which happens to have nickel and copper sulphide. If you are looking at air samples originating from either Inco's or Falconbridge's operations, the iron sulphide and iron oxide would be a very significant component. Therefore, whatever techniques we are using, if there is any chance the results are influenced by the presence of iron, we should take steps to run some iron sulphide and iron oxide samples.

General Discussion

There was some discussion of the objectives of the XANES work. The original work was to distinguish between nickel oxide, sulphate, and subsulphide. Bruce was concerned that a conservative approach may be to toxicologically assume all detected sulphides are subsulphide, as there are no toxicological studies on sulphides. Therefore, if this

approach is selected, it is critical to distinguish whether the sulphides are present as nickel sulphide, or if they are iron or copper sulphides (which are not considered carcinogens).

Fred	Questioned whether some of the nickel sulphide may be overlapping with pentlandite. He indicated that he thought it was unusual to see such levels of NiS, but that pentlandite (which appeared to have a very similar curve in the report figures) would be quite possible and very common.								
Jeff	The pentlandite source was not used in the fitting operation because he was sure it was contaminated.								
Bruce	It's very difficult to get a pure pentlandite.								
Fred indicated	he might be able to get a purer pentlandite source for future analyses.								
Glenn	What further work can we do to better clarify the nature of the sulphides present?								
Marc	Asked if it is possible for CLS to do L-edge analyses (a finer form of analyses).								
Jeff	CLS is able to do it at their facility, and he has recently completed some nickel L-edge analyses.								
Marc	Conducting some iron and copper L-edge work may resolve the issue.								
Jeff	Agreed.								

There was some discussion of the potential source of pentlandite, whether it was from the slag crushing operations, or the tailing piles.

Marc Would it be possible to use solid state NMR analyses? Ni-61 is NMR active. However, he wasn't sure there was sufficient material to get a sufficient spectrum. But it would be a separate analysis that may be able to shed some light on the nickel sulphide and subsulphide within the samples.

It was generally thought that it would be difficult to collect enough material to complete the analysis.

Glenn How feasible is it to complete the L-edge work time-wise? What is the availability of beam-time at CLS for L-edge analyses?

Jeff I don't think there would be much problem obtaining beam-time here at anytime in the future.

There was concensus that this seemed to be an appropriate approach to help clarify the sulphide issue.

Glenn	Why did the SEM identify nickel subsulphide in the dust samples, but not in the CLS analyses?
Bruce	What filters were used in the vacuum system?
Glenn	I believe it was equipped with a Hepa filter, but I would have to check on that. [ed: It was not HEPA-certified. The filter was rated at 10μ m].
Bruce	It would be useful to know what fraction of the particulate ends up in the jar <i>versus</i> the vacuum filter.
Glenn	I will follow up on that.
	Are we concluding that the beam specificity issue for the SEM is hampering the identification of the nickel subsulphide?
Bruce	The results of Fred's analysis indicated that he agreed with SGS that the particles in dust were nickel subsulphide.
Fred	"A" particle in dust was nickel subsulphide. It's an important distinction. I have no idea of what the population of particles are.
Bruce	But did you look at several sulphide-like particles, and were they all the same?
Fred	No.
Bruce	One of the problems I find as a chemist, is that the very good technical people on the SEM would find an extremely interesting particle and focus on that, yet it would be an insignificant particle in terms of the overall sample. It is a problem finding an interesting particle and then to find if it is prevalent.
Chris	Agreed. When we've done our searches, as a result of time, we have limited the statistics to a certain number of occurrences which may be less than 50 grains. As such, the quantitative aspects of this are open to some question because of statistics, compounded with the issues Fred has raised.

Glenn	Only one dust sample has been analyzed by CLS. It would be useful to submit additional dust samples from a couple of different locations to CLS for follow up work, with parallel analyses with SEM by SGS.
	Would it be fair to say that the XANES approach, because it can gather different layers, rather than focusing on one specific layer like SEM, would provide a better indication of the presence of nickel subsulphide versus sulphides versus other species?
Fred	I think you should get the same answer. However, if you're going to use SEM, you need a good statistically significant dataset. And evaluating 50 particles is not a statistically significant dataset. Something more on the order of 500 particles would be more statistically significant.
Glenn	SGS is that possible?
Chris	Yes. We can do an actual polished section, where we actually look through the plane of a particle. Because both optically and SEM, we can confirm the presence of nickel subsulphide.

A question was asked as to the detection limit of the XANES approach, and whether SEM would be more sensitive than XANES, or would they be more equivalent. Marc indicated he believed that the XANES would be more sensitive than SEM because you have a lot more photons on a given spot.

Chris	Another option would be to look specifically at the residues from each of the Tessier leach steps using SEM. So you could potentially isolate an organic fraction that can be more specifically analyzed.
Glenn	That would be very useful, so that we could make a better correlation for our entire set of samples analyzed by Tessier.
Jeff	Would heartily endorse this approach for XANES as well.
Glenn	Would it be useful to conduct some sampling at different sampling times? Different wind directions, <i>etc.</i> ?
Bruce	Yes, this would be useful to create a composite of what individuals are exposed. Rather than simply using one snapshot in time, it would be useful to evaluate what is in the air over different seasons and different wind directions. And does it make sense from where it is coming from. Is there something there, from a risk management point of view, that can be controlled either the emission or the resuspension if it is windblown.
Glenn	Does anyone have any other issues?

- Bruce From his point of view, the air samples are more important than the dust samples because the dust samples are adjusted by the bioaccessibility. However, in air, the unit risks for respiratory cancer are quite significantly different between the various nickel species. So you can get radically different answers which influence radically different risk management plans, depending on whether you have identified the species correctly.
- Mike We need to clarify the discrepancy with the dust. Whether it is using polished sections or another analysis technique.
- Glenn Agreed. I will put together the path/strategy going forward, and submit the draft to everyone. This will then be passed by the TC for their approval.

Thank you to all those involved in the meeting.

Meeting adjourned.

OVERVIEW OF SPECIATION ISSUES

The following "weight-of-evidence" analytical approach was conducted for air filter, soil, and dust samples collected during Phase II of the HHRA (see relevant sections in this chapter):

- 1. All selected samples were analyzed using a modified Tessier sequential leach extraction technique, which quantifies the mass fraction of each COC within the sample which leaches out in sequentially more aggressive digestion procedures; and,
- 2. All dust and air filter samples were analyzed using mineralogical analyses, such as soil trace mineral search techniques and soil bulk mineralogical analyses (*i.e.*, using a scanning electron microscopy). A subset of the soil samples analysed using the sequential leach extraction (approximately 10%) were also analysed using these mineralogical techniques.

Analytical Technique	Total Samples Analyzed							
	Soil	Air Filter	Dust					
Sequential leach	84	10	25					
Mineralogical analyses	10	10	25					

Number of Samples Analyzed using each Speciation Technique

Soil Samples

A total of 84 soil samples were analyzed using the sequential leach technique, including 19 samples from Copper Cliff, 21 samples from Falconbridge, 18 samples from Coniston, 16 samples from Sudbury central, and 10 samples from Hanmer.

Of these 84 samples, 10 were selected for additional mineralogical analyses using the SEM (4 from Falconbridge, 3 from Copper Cliff, and 3 from Coniston). These particular samples were selected for the additional analyses by SEM due to their locations in the three original smelting communities and the presence of elevated nickel concentrations detected in the samples.

Air Filters

A total of 10 air filters were selected for evaluation by both sequential leach and SEM analyses. These included: a PM10 and PM2.5 filter from each of the Copper Cliff, Falconbridge, Windy Lake, and Travers Street stations, as well as a PM10 filter from the Hanmer Station (no PM2.5 was collected at this site) and an additional PM10 filter from the Travers Street station (different date from the other samples). All filters, with the exception of the additional Travers Street station PM10 filter (collected September 24th, 2004), were obtained on June 8th, 2004.

Dust Samples

A total of 25 indoor dust samples were selected for evaluation by both sequential leach and SEM analyses. These included 4 from Falconbridge, 7 from Copper Cliff, 4 from Sudbury (centre), 5 from Coniston, and 3 from Hanmer.

Speciation Results

Speciation results for soil, air filter, and dust samples indicate emissions from smelting and refining sources have impacted each of the sample media.

- Speciation fingerprint noted in the leach analyses indicated similar species were present in each of the COIs throughout the GSA;
- Nickel and copper were the two predominant COCs detected;
- Nickel oxide appears to be ubiquitous throughout each of the COIs, in each of the sample media, in particular soil and dust samples;
- Lead paint flakes were not detected in any of the media, including dust samples taken from residences throughout the GSA;
- Species present in dust samples are similar to those observed in air filters, indicating that the metals present within the dust likely originated from airborne emission sources, rather than being tracked in from outdoor soil sources.
- Much of the species present in the air filters appears to be coated by an organic carbonaceous layer, likely related to coke material.
- Nickel subsulphide (Ni3S2) was detected in a number of air filter and indoor dust samples taken throughout the GSA. Only the Copper Cliff and the Travers Street stations showed the presence of Ni3S2, while Ni3S2 was observed in nearly all of the dust samples.

As there was some uncertainty associated with the presence of nickel subsulphide in both the air and dust samples, a series of conformational steps were undertaken. Dr. Fred Ford of Inco Technical Services, who has experience working with nickel matte, was contracted by the SARA Group to review the SGS SEM mounts and provide an opinion as to the validity of their analyses and confirmation of the possible presence of nickel subsulphide.

Results of Dr. Ford's analyses indicated that, while SGS was correctly using appropriate techniques to conduct their analyses, due to the nature of the equipment and sample, it was difficult to absolutely confirm the presence of nickel subsulphide. In brief, there are two limitations to chemical typing of sulphide particules using X-ray microbeam techniques:

- 1. The EDS detector cannot determine the presence of hydrogen, so hydroxide or hydroxyl groups cannot be identified; and,
- 2. The beam used for the current SEM analyses may be to large to accurately identify the species present in very small particles, such as those on the air filter samples and some of the dust samples.

These uncertainties make it increasingly difficult to accurately distinguish between nickel subsulphide (*i.e.*, Heazlewoodite) and nickel sulphide (*i.e.*, Millerite). Dr. Ford

concluded that the particles on the air filters he examined may have been nickel subsulphide, or might have been something else, like nickel sulphide or metallic nickel with a sulphate coating. However, he was more certain that the particles observed in the dust samples were correctly identified as nickel subsulphide.

As a result of this uncertainty, it was decided to submit a number of samples for X-ray Absorption Near-Edge Structure (XANES) spectroscopy analysis.

- Six (6) additional samples were sent to Canadian Light Source (CLS) for analysis.
 - The TSP and PM10 air filters from the Travers Street location for June 8th
 - The TSP and PM10 air filters from the Copper Cliff station for June 8th
 - A dust sample from Falconbridge which was previously reported by SEM to contain nickel subsulphide
 - An air filter from an urban Ontario city during a higher particulate day, for comparison purposes

Results of the CLS analyses indicated:

- There is no nickel subsulphide present in the dust sample. The sulphur structures present appear to be sulphates and an organic sulphur species (e.g., a thiol, disulphide, or thiophene).
- The majority of the sulphur present in the air filters is in sulphate form.
- Only the TSP and PM10 filters from the Travers Street station showed the presence of sulphide. The Copper Cliff station did not show any sulphide present.
- Analyses of the sulphide present in the Travers Street samples (11 to 16% of total) indicates it more closely resembles nickel sulphide than nickel subsulphide.

Dr. Lamoureux's Analyses

- Seven (7) air filters from the Sudbury Soils Study were submitted by the MOE to Dr. Lamoureux for XANES spectroscopic analysis. These samples were selected based upon elevated levels of nickel present, while providing good coverage of the various sampling sites across the GSA.
 - The PM10 and PM2.5 air filters from the Copper Cliff station for March 10th (2 filters)
 - The PM10 air filters from the Travers Street, Garson, and Skead stations for March 10th (3 filters)
 - The PM10 and PM2.5 air filters from the Falconbridge station for October 18th (2 filters)

Results of Dr. Lamoureux's analyses indicated:

• The presence of nickel oxide and nickel sulphate was detected in all seven samples.

• However, no nickel subsulphide was found in any of the seven samples.

SGS Lakefield Research Limited A Mineralogical Study of Speciation of Ni in two Dust- and five Air-Filter Samples: SARA Project

prepared for

THE SARA GROUP

LR 11060-004 – MI5001-MAR06 March 17, 2006

NOTE:

This report refers to the samples as received.

The practice of this Company in issuing reports of this nature is to require the recipient not to publish the report or any part thereof without the written consent of SGS Lakefield Research Limited.

1

Table of Contents

Page No.

Fable of Contents	2
Executive Summary	3
Introduction	4
Results – Dust Samples	5
Results – Air Filter Samples	7
Conclusions	10

Appendix 1 – Raw Data; Dust Samples

Sample **582-05-1307** Sample **602-05-1311**

Appendix 2 - Raw Data; PM10 Air Filter Samples

Sample TRA-JAN 04.04 Sample TRA-MAR 10.04 Sample TRA-JUL 02.04 Sample TRA-NOV 29.03 Sample TRA-SEP 30.04

Executive Summary

Two dust samples previously analysed by SEM-techniques as surface-mounted particulates on carbon tape were re-submitted for analysis in **polished section**. The objective was to confirm whether or not Nickel-sub-sulphide (Ni_3S_2 ; or Heazlewoodite) was present, as analysis in surface-mounted samples may be compromised by irregular surfaces and other influences on X-ray signal attenuation, as well as lack of discrimination of the complexity candidate particles by bombarding exteriors of particles only. In addition, five air filters were submitted to establish the variability of Ni-species collected over periods of known prevailing wind direction.

Results of the polished section investigation confirmed the presence of heazlewoodite in both dust samples. In sample 582-05-1307, a single Ni sub-sulphide grain was detected as a complex particle attached to a mixed base-metal sulphate. In decreasing order of particle frequency, accompanying Ni species included pentlandite (8), discrete base-metal sulphate particles (4), and Ni-oxides (3). In sample 602-05-1311, a single liberated heazlewoodite particle was detected, along with pentlandite (7) and Ni-oxides (5).

Heazlewoodite was encountered in three of the five air filter samples and distinctly different Nispecies assemblages were encountered.

SGS LAKEFIELD RESEARCH LIMITED

Christopher C. Hamilton M.Sc., FSAIMM. Consulting Mineralogist

Joe Zhou, M.Sc. Group Leader, Process Mineralogy

Experimental Work by: N. Morton C. Hamilton

Introduction

Two dust samples were submitted for SEM investigation to confirm the presence of Ni-subsulphide (Ni_3S_2) in polished section to compare results against a previous, surface-mounted protocol. In addition, five PM10 Air filters were submitted to establish the variability of Nispecies collected over periods of known prevailing wind directions.

Procedures

The mineralogical analyses were carried out by scanning electron microscopy (SEM) using a Leo 440 SEM combined with energy dispersive X-ray spectrometry (EDS) and equipped with both a secondary electron and back-scattered electron detector. The EDS system was a light-element-capable Oxford ISIS unit providing the opportunity of identifying organic matter and easily discriminating sulphate and sulphide species.

Air filter samples were cut and mounted directly on a SEM plate, while soil and dust samples were prepared as polished sections. Two polished sections of each dust sample were prepared by mixing samples in chlorinated epoxy resin and ground and polished using diamond pastes on different cloths to avoid cross-contamination. After preparation, all samples were carbon-coated to render surfaces conductive under the electron beam.

SEM Operating conditions were 25 kV accelerating voltage and 3 nA incident specimen current. Qualitative mineral identifications were made using 10 second counting times and semiautomated, systematic scans of sample surfaces were performed, stopping at candidate particles to identify and characterize grains when Ni species were encountered. For each particle, measurements, qualitative identifications as well as photomicrographs were taken. For each scan, a target population of 30 occurrences were sought in an allotted 3 hour search period.

Results – Dust Samples

Appendix 1 provides raw data for the dust samples and Figures 1 and 2 illustrate particles of interest supporting the presence of Ni-sub-sulphide. Figure 1 specifically shows heazlewoodite in association with a complex, mixed base-metal sulphate particle (Fig. 1A) and discrete base-metal sulphate particle (Fig 1B) in sample 582-05-1307. Figure 2 shows liberated heazlewoodite (Fig. 2A) and a particle of Ni-oxide with an attached Cu-Sulphide (of composition approximating Cu_2S) in sample 602-05-1311. No sulphates were found in the latter sample and the association of Ni-oxide and Cu-sulphide is consistent with derivation from smelter emissions. (In this regard, Cu_2S and heazlewoodite are the primary sulphides formed in smelting.)

Figure 1. SEM/BSE photomicrographs of: (A) Ni₃S₂ (bright, rounded grain) and (B) A complex, Cu-Fe-Ni-Co-sulphate: Sample 582-05-1307. Note the arcuate shape of the latter particle, as well as the lower BSE signal intensity relative to the heazlewoodite.

Appendix 2 shows high-magnification views of the two heazlewoodite grains found in the dust samples, along with EDS spectra and compositional evidence in support of the identification of Ni_3S_2 .

Figure 2. SEM/BSE Images of: (A) Liberated heazlewoodite and (B) Ni-Fe-Oxide with a peripheral inclusion of sub-rounded Cu₂S: **Sample 602-05-1311**. Note the similar BSE signal intensity of the Ni-sulphide and Cu-sulphide.

Results – Air Filter Samples

Air filter sample data are presented in Appendix 3 and data are summarized in Table 1. To assist in correlating between the Ni-assemblage and the nature of particulate matter, Figure 3 shows photomicrographs of arbitrarily selected regions of the filters to demonstrate loadings of particulates on filters.

 Table 1.
 Summary of Ni-species detected in the analysed air filter samples. Candidate Ni-sub-sulphides in doubt are noted in parentheses. Ni-oxides include true, simple oxides with and without Fe and may include species of doubtful chemistry, while the "Ni-other" category includes Cu-Ni-O species which may include undetected light elements. MS denotes mixed-metal-sulphides without oxygen, possibly sulphide-matte.

Air Filter	Ni ₃ S ₂	Pentlandite	MS	Mixed	Ni-	Ni-Oxide	Ni-Other
Sample				Sulphates	Sulphates		
TRA-JAN 04.04	n.d	n.d.		24	6	n.d.	n.d.
TRA-MAR 10.04	3	5		6	7	4	3
TRA-JUL 02.04	n.d.	12		11	3	3	1
TRA-NOV 29.03	2(1)	18		n.d.	n.d.	7	n.d.
TRA-SEP 30.04	7	2	13	n.d.	n.d.	5	

Ranked in the same sample sequence as tabulated, other points of interest are as follows:

Sample TRA-JAN 04.04:

- 1. Chlorine was detected in, or accompanying, many of the sulphate particles, as well as thin films of unresolved chlorides on silica-fibres.
- 2. The average particle size of quantified sulphate species was 2.2 micrometers.
- 3. Two broad compositional groups of sulphate were found, one predominantly Ni-bearing with traces of Co, Fe and Cu, and the other with Cu and Ni in significant, but variable proportions. The latter group is clearly a mixed sulphate unresolvable in this SEM study.

Sample TRA-MAR 10.04:

- 4. Chlorine was also detected along with several sulphate particles.
- 5. The average particle size of quantified sulphate species was 3.4 micrometers.
- 6. Two broad compositional groups of Ni-sulphate were also found and Ni- and Ni-Cu species with oxygen detected. Variable carbon signals were witnessed, it is not possible to positively identify these species as simple oxides, carbonyls or otherwise.

Sample TRA-JUL 02.04:

- 7. Ni- and other sulphates have a distinctly rhombic and twinned morphology.
- 8. Levels of Cu are low but ubiquitous in most sulphates.
- 9. Fe levels are higher in general relative to previous samples.
- 10. The average size of analysed particles was 3 micrometers.
- 11. No Chlorine was detected in analysed particles.

Sample TRA-NOV 29.03:

- 12. No discrete sulphates were detected, nor any chlorides.
- 13. Cu-sulphide was also detected, with a composition close to Cu_2S .
- 14. The first candidate heazlewoodite is very small and lies at depth in the filter. No oxygen was detected, but a mineral chemistry of Ni_3S_2 was returned by SEM/EDS. The second candidate heazlewoodite was confirmed as a sulphide mineral and had a distinct Ni-sulphate attachment.
- 15. Relative to all other samples, the mineral assemblage is predominantly concentratemineral rich.

Sample TRA-SEP 30.04:

- 16. Cu-metal and Cu-sulphide (Cu₂S) were detected, indicative of smelter-derivation. Fayalite and magnetite were also common, supporting the above, since Fe_2SiO_4 and Fe_3O_4 are known smelter products. In this respect, it is unsurprising that this sample represents the sample with the highest number of heazlewoodite grains.
- 17. Mixed metal sulphides are dominant in this sample, with substantially variable metal compositions and with no oxygen. Cobalt is present in this sulphide material at about 1% by semi-quantitative SEM/EDS analysis. This is considered to be a sulphide matter species (Figure 3).

Figure 3. SEM/BSE Images of: (A) Unresolved metal-sulphides, probably matte, at the surface of an angular Fe-silicate particle with duller Fe-oxides relative to sulphide. (B) Probable heazlewoodite with abundant accompanying Fe-oxides. Sample **TRA-SEP-30-04 PM10**.

Conclusions

The present investigation revealed the following results:

- 1. A single grain of heazlewoodite, or Ni-sub-sulphide (Ni_3S_2) was detected in polished section analysis of both dust samples, confirming the presence as suggested by previous SEM analysis.
- 2. Using the surface-based SEM analysis method directly on the submitted PM10 air filters, heazlewoodite was found in three of the five submitted samples.
- 3. In addition, though limited by statistical constraints, air filter results demonstrate distinct overall differences in average Ni-species and presence of Cu_2S correlates with that of heazlewoodite.

APPENDIX 1 : Summary Data for SEM Candidate Particles

(Based on 3-hour scan time or 30 candidate particle-threshold)

SAMPLE 582-05-1307

Site #	Gr #	Loc.	(SEM)	Photo ID			Gi	rain Data									Host Particle Data			
		x	Y		Occurrence	Association	Major	Mod	Minor	ID	Meas. X (um)	Meas. Y (um)	area (um2)	Grain ECD (um)	% distr	Host Phase	Meas. X (um)	Meas Y (um)	Meas area (um2)	ECD. (um)
1	1	12.62	11.09	21031-1	Liberated		As, Fe, S			Arsenopyrite	4.8	4.8	22.8	5.4	1.2					
2	1	14.76	11.25	21031-2	Liberated		Ni, Fe, S			Pentlandite	4.4	5.4	23.9	5.5	1.3					
3	1	15.24	11.14	21031-3	Liberated		Fe	0	Ni, Si	Fe>Ni-Oxide	9.6	8.8	83.9	10.3	4.5					
4	1	19.95	11.11	21031-4	Liberated		Cu		0	Cu-O	3.8	5.2	19.5	5.0	1.0					
5	1	20.11	13.45		Liberated		Fe, Ni, S			Pentlandite	11.1	5.0	55.1	8.4	3.0					
6	1	21.22	14.44		Liberated		Fe, Ni, S			Pentlandite	11.9	7.3	86.6	10.5	4.7					
7	1	19.3	15.05		Liberated		Pb, S		0	Anglesite(?)	6.8	2.7	18.0	4.8	1.0					
8	1	19.48	15.85		Liberated		S,Fe,Cu			Chalcopyrite	9.8	9.2	89.9	10.7	4.8					
9	1	14.52	19.7	21031-5	Liberated		Fe, O	Ni		Fe>Ni-Oxide	23.0	14.2	326.9	20.4	17.6					
10	1	19.04	20.04	21031-6	Liberated		Fe, O	NI		Fe>Ni-Oxide	16.5	16.9	278.7	18.8	15.0					
11	1	14.8	21.51	21031-7	Liberated		Fe, Ni, S			Pentlandite	4.6	4.9	22.5	5.4	1.2					
12	1	15.08	23.23	21031-8	Liberated		Fe, Ni, S			Pentlandite	4.7	6.1	28.5	6.0	1.5					
13	1	50.3	10.89	21037-1	Liberated		Fe, Cu	S	Ni,O,Co	BM-Sulphate	33.2	11.7	387.4	22.2	20.9					
14	1	50.52	16.09	21037-2	Liberated		Fe, Cu, S		Ni,O,Co	BM-Sulphate	8.1	7.8	62.9	9.0	3.4					
15	1	47.9	18.25	21037-3	Liberated		Fe, Ni, S			Pentlandite	5.4	9.0	48.5	7.9	2.6					
16	1	54.43	18.66	21037-4	Attached/C	omplex grain	Ni, S	Fe		Ni3S2	7.2	2.7	19.4	5.0	1.0					
	2	54.43	18.66	21037-4	Attached/C	omplex grain	Ni,Cu,Fe	S	O,Co	BM-Sulphate	7.7	5.1	39.2	7.1	2.1					
17	1	47.84	20.88	21037-5	Liberated		Ni	Fe	0	Ni>Fe-Oxide	2.7	3.1	8.2	3.2	0.4					
18	1	49.54	22.24	21037-6	Attached to 0	Cr-Fe-Nd-Oxide	Fe, Ni, S	Cu,O	Co	BM-Sulphate	12.5	6.7	83.9	10.3	4.5	Cr, Fe, Nd, O	13.4	12.27	164.42	14.5
19	1	45.86	23.33	21037-7	Liberated		Fe, Ni, S			Pentlandite	10.3	7.7	78.7	10.0	4.2					
20	1	45.87	23.34	21037-8	Liberated		Fe, Ni, S			Pentlandite	9.7	7.4	71.4	9.5	3.8					
										Sum/Avg			1856.2	9.3	100.0					

SAMPLE	602-05-1311
--------	-------------

Site #	Gr #	Loc. (SEM)		Photo ID		Grain Data												Host particle Data						
		x	Y		Occurrence	Association	Major	Mod	Minor	ID	Meas. X (um)	Meas. Y (um)	area (um2)	Grain ECD (um)	% distr	Host Phase	Meas. X (um)	Meas Y (um)	Meas area (um2)	ECD. (um)				
1	1	85.12	9.54	21032-1	Liberated		Ni		0	Ni-Oxide	7.84	7.54	59.1	8.7	3.0									
2	1	84.06	9.94	21032-2	Liberated		Fe, Ni, S			Pentlandite	14.97	4.24	63.5	9.0	3.2									
3	1	77.88	11.06	21032-3	Liberated		Fe, Ni, S			Pentlandite	6.88	6.22	42.8	7.4	2.1									
4	1	88.74	13.65	21032-4	Liberated		Ni		0	Ni-Oxide	8.12	15.52	126.0	12.7	6.3									
5	1	83.66	13.62	21032-5	Liberated		Fe, Ni, S			Pentlandite	6.36	9.9	63.0	9.0	3.2									
6	1	85.21	13.94	21032-6	Inclusion		Fe	0	Ni	Fe.Ni-Oxide	20.6	17.21	354.5	21.3	17.8	Cu2S	6.65	4.06	27.00	5.9				
7	1	83.78	15.42	21032-7	Liberated		Fe, Ni, S			Pentlandite	9.04	9.45	85.4	10.4	4.3									
8	1	79.58	15.82	21032-8	Liberated		Fe, Ni, S			Pentlandite	7.15	5.66	40.5	7.2	2.0									
9	1	87.4	16.2	21032-9	Liberated	Ni (99), Fe (1)	Ni	0	Fe	Ni>Fe-Oxide	10.89	11.6	126.3	12.7	6.3									
10	1	82.71	16.32	21032-10	Liberated		Ni, S			Ni3S2	4.02	5.05	20.3	5.1	1.0									
11	1	83.85	20.13	21032-11	Liberated		Fe, Ni, S			Pentlandite	29.11	13.47	392.1	22.3	19.7									
12	1	77.03	21.94	21032-12	Liberated		Ni		0	Ni-Oxide	10.85	7.19	78.0	10.0	3.9									
13	1	83.65	13.62	21038-1	Liberated		Fe, Ni, S			Pentlandite	6.79	9.47	64.3	9.1	3.2									
14	1	83.86	20.13	21038-2	Liberated		Fe, Ni, S			Pentlandite	29.15	16.36	476.9	24.6	23.9									
										Sum/Avg.			1992.7	12.1	100.0									

SAMPLE TRA JAN 04.04 PM10

Site #	Gr #	Loc.	(SEM)	Photo ID			Species/Particle Data									Host Particle Data				
		x	Y		Occurance	Association	Major	Mod	Minor	ID	Meas. X (um)	Meas. Y (um)	area (um2)	Grain ECD (um)	% distr	Host Phase	BMS ESD (um)	Host Meas X (um)	Host Meas Y (um)	Meas area (um2)
1	1	76.72	70.36	.IAN04-1		-	Ni	Cu	Fe S O	BM-Sulphate	1	2	2.0	16	11					
2	1	76.89	70.31	JAN04-2			Ni	0	Cu. Fe	BM-Sulphate	2	3	6.0	2.8	3.4					
2	2	76.89	70.31	JAN04-2			Ni	-	S. 0	Ni- Sulphate	1	1	1.0	1.1	0.6					
2	3	76.89	70.31	JAN04-2			Ni		S, O	Ni- Sulphate	1	1	1.0	1.1	0.6					
3	1	77.04	70.26	JAN04-3			Ni, O	Cu	Fe, S	BM-Sulphate	4	4	16.0	4.5	9.0					
4	1	77.38	70.24	JAN04-4			Ni	Cu, O	Fe, S	BM-Sulphate	2	2	4.0	2.3	2.2					
4	2	77.38	70.24	JAN04-4			Ni, O	Cu	Fe, S	BM-Sulphate	2	2	4.0	2.3	2.2					
5	1	77.92	70.34	JAN04-5			Ni, O		Cu, Fe, S	BM-Sulphate	1	1	1.0	1.1	0.6					
6	1	79.16	70.75	JAN04-6			Ni, O		Cu, Fe, S	BM-Sulphate	1	1	1.0	1.1	0.6					
6	2	79.16	70.75	JAN04-6			Ni, Cu, O	S	Fe	BM-Sulphate	1	1	1.0	1.1	0.6					
7	1	77.5	70.67	JAN04-7			Ni, O		Cu, S	BM-Sulphate	1	1	1.0	1.1	0.6					
7	2	77.5	70.67	JAN04-7			Ni, O		Cu, S	BM-Sulphate	2	2	4.0	2.3	2.2					
8	1	76.91	70.73	JAN04-8			Ni, O	Cu	Fe, S	BM-Sulphate	2	2	4.0	2.3	2.2					
8	2	76.91	70.73	JAN04-8			Ni, O	Cu	Fe, S	BM-Sulphate	2	2	4.0	2.3	2.2					L
9	1	76.43	70.59	JAN04-9			Ni, O		S,Fe, Cu	Ni- Sulphate	2	3	6.0	2.8	3.4					L
10	1	76.65	70.9	JAN04-10			Ni, O	Cu	Fe, S	BM-Sulphate	2	2	4.0	2.3	2.2					
11	1	76.81	70.93	JAN04-11			Ni, O		Cu, Fe, S	Ni- Sulphate	2	2	4.0	2.3	2.2					
11	1	76.81	70.93	JAN04-11			Ni, O		Cu, Fe, S	Ni- Sulphate	1	1	1.0	1.1	0.6					L
12	1	77.79	70.9	JAN04-12			Ni, O		Cu, Fe, S	Ni- Sulphate	1	2	2.0	1.6	1.1					
13	1	83.96	70.9	JAN04-13			NI, O	Cu	Fe, S	BM-Sulphate	1	1	1.0	1.1	0.6					
14	2	84	70.92	JAN04-14			NI, O	Cu	Fe, S	BM-Sulphate	1	6	6.0	2.8	3.4					
14	1	84	70.92	JAN04-14			NI, O	Cu	Fe, S	BM-Sulphate	1	1	1.0	1.1	0.6					l
15	2	81.9	71.27	JAN04-15			NI, O	Cu	Fe, S	BM-Sulphate	2	2	4.0	2.3	2.2					
15	1	81.9	71.27	JAN04-15			Ni, O		Fe, S	BM-Sulphate	2	2	4.0	23	2.2					
17	1	90.16	71.31	IAN04-17			Ni O	Cu	Fe S	BM-Sulphate	1	2	2.0	1.6	11					
18	1	76.31	71.14	JAN04-18			Ni	0.00	Fe S	BM-Sulphate	3	6	18.0	4.8	10.1					
19	1	76.43	71.38	JAN04-19			Ni. O	Cu	Fe. S	BM-Sulphate	2	2	4.0	2.3	2.2					
20	2	76.47	71.45	JAN04-20			Ni	Cu	Fe, O, S	BM-Sulphate	3	5	15.0	4.4	8.4					
20	1	76.47	71.45	JAN04-20			Ni. O	Cu	Fe, S	BM-Sulphate	2	2	4.0	2.3	2.2					
21	1	77.62	71.61	JAN04-21			Ni	Cu	Fe, S	BM-Sulphate	2	2	4.0	2.3	2.2					
22	1	78.82	71.44	JAN04-22			Ni, O	S, Cu	Fe	BM-Sulphate	2	2	4.0	2.3	2.2					
23	1	81.96	71.54	JAN04-23			Ni, O, Cu	s	Fe	BM-Sulphate	1	3	3.0	2.0	1.7					
24	1	81.89	71.61	JAN04-24			Ni,O	Cu, S	Fe,Co,Cl	Co,Fe,Cu,Ni-Sulphate+Cl	3	4	12.0	3.9	6.7					
25	1	82.52	71.54	JAN04-25			Ni	Cu	Fe, S	BM-Sulphate	4	3	12.0	3.9	6.7					
26	1	83.84	71.55	JAN04-26			Ni, O	Cu	S, Fe	BM-Sulphate	2	2	4.0	2.3	2.2					
27	1	84.6	71.51	JAN04-27			Ni	O, Cu	S	BM-Sulphate	2	2	4.0	2.3	2.2					
28	1	85.51	71.81	JAN04-28			Ni, O	Cu, S	Fe	BM-Sulphate	2	2	4.0	2.3	2.2					
29	1	82.82	71.76	JAN04-29			Ni, O	Cu	S, Fe	BM-Sulphate	2	2	4.0	2.3	2.2					
30	1	82.65	71.75	JAN04-30			Ni	O, Cu	S, Fe	BM-Sulphate	2	4	8.0	3.2	4.5					<u> </u>
															ļ					<u> </u>
										Sum/Avg.			178.0	2.2	100.0					

LIMS

SAMPLE TRA JUL 02.04 PM10

Site #	Gr #	Loc.	(SEM)	Photo ID		Particle Data											I	Host Part	ticle Data	3	
		x	Y		Occurrence	Association	Major	Mod	Minor	ID	X (um)	Y (um)	area (um2)	Grain ECD (um)	% distr	Host Phase	BMS ESD (um)	Host Meas. X (um)	Host Meas Y (um)	Meas area (um2)	Host ECD. (um)
1	1	41.71	40.21				Ni, Fe, S			Pentlandite	8	6	48.0	7.8	17.1						
2	1	42.02	40.18				Ni, Fe, S			Pentlandite	2	2	4.0	2.3	1.4						
3	1	53.87	40.56				Fe, Cu	Ni	O,S	BM-Sulphate	4	4	16.0	4.5	5.7						
4	1	49.78	40.64				Fe, S	0	Ni	BM-Sulphate	2	2	4.0	2.3	1.4						
5	1	54.33	40.81	JUL02-1			Ni		0	Ni Oxide	2	2	4.0	2.3	1.4						
6	1	54.45	40.91				Cu	Fe, Ni, S	0	BM-Sulphate	1	14	14.0	4.2	5.0						
7	1	54.61	40.88				Pb, S			Pb-Sulphate	5	5	25.0	5.6	8.9						
8	1	55.78	40.99				Ni		Cu,Co,Fe,O	Ni-BM-O(?)	1	1	1.0	1.1	0.4						
9	1	55.35	41.02				Ni, Fe, S			Pentlandite	3	2	6.0	2.8	2.1						
10	1	51.61	41.07				Ni, Fe, S			Pentlandite	1	2	2.0	1.6	0.7						
11	1	49.41	41.04				Fe, S		Ni, O	BM-Sulphate	1	2	2.0	1.6	0.7						
12	1	46.55	41				Fe, S		Ni	Pent/Po	1	2	2.0	1.6	0.7						
13	1	46.24	41.08				Ni, Fe, S			Pentlandite	1	1	1.0	1.1	0.4						
14	1	45.16	40.99				Fe, Ni	Cu	S, O	Sulphate	2	3	6.0	2.8	2.1						
15	1	44.94	41.01				Ni, Fe, S			Pentlandite	2	4	8.0	3.2	2.9						
16	1	43.93	40.98				Ni		0	Ni-Oxide	2	1	2.0	1.6	0.7						
17	1	42.62	41.18				Fe	Cu,S	O,Ni	BM-Sulphate	1	1	1.0	1.1	0.4						
18	1	45.55	41.32				Fe	Cu,S	O,Ni	BM-Sulphate	2	2	4.0	2.3	1.4						
19	1	48.22	41.39				Cu, Ni	S	Fe, O	BM-Sulphate	2	2	4.0	2.3	1.4						
20	1	49.22	41.4				Fe, Ni	Cu, S, O		BM-Sulphate	5	5	25.0	5.6	8.9						
21	1	53.99	41.33				Ni, Fe, S			Pentlandite	1	1	1.0	1.1	0.4						
22	1	54.01	41.48				Ni, Fe, S			Pentlandite	2	2	4.0	2.3	1.4						
23	1	55.94	41.3	JUL02-2			Ni		Cu, S, O	Ni_Sulphate	5	5	25.0	5.6	8.9						
24	1	55.94	41.3				Ni		0	Ni-Oxide	3	3	9.0	3.4	3.2						
25	1	54.01	41.48				Ni, Fe, S			Pentlandite	3	2	6.0	2.8	2.1						
26	1	54.01	41.54	JUL02-3			Ni, S		0	Ni-Sulphate	2	2	4.0	2.3	1.4						
27	1	52.74	41.51				Cu	Fe, S	Ni, O	BM-Sulphate	2	4	8.0	3.2	2.9						
28	1	51.46	41.58	JUL02-4			Ni, S		0	Ni-Sulphate	2	2	4.0	2.3	1.4						
29	1	50.84	41.6				Ni, Fe, S			Pentlandite	4	4	16.0	4.5	5.7						
30	1	50.69	41.65				Ni, Fe, S			Pentlandite	4	6	24.0	5.5	8.6						
										Sum/Avg.			280.0	3.0	100.0						

DATE

LIMS

DATE

SAMPLE TRA MAR 10.04 PM10

Site #	Gr #	e oc. (SEM)		Photo ID		Particle Data												Host Particle Data							
			, ,								Meas.	Meas.	area	Grain ECD		Host	BMS ESD	Host Meas.	Host Meas	Host Meas area	Host ECD.				
		X	Y		Occurrence	Association	Major	Mod	Minor	ID	X (um)	Y (um)	(um2)	(um)	% distr	Phase	(um)	X (um)	Y (um)	(um2)	(um)				
1	1	76.11	37.63	MAR10-1			Ni	s	O.Fe.Cu	Ni/>Fe-Sulphate	2	2	4.0	2.3	0.8										
2	1	76.39	37.56				Fe, Ni, S		-, -,	Pentlandite	1	1	1.0	1.1	0.2										
3	1	76.74	37.5				Ni		Cu, O	Ni-Cu-O(?)	1	2	2.0	1.6	0.4										
4	1	77.28	37.67	MAR10-2			Ni	0	S, Cu	Ni-Sulphate	2	2	4.0	2.3	0.8										
5	1	77.36	37.73				Ni	0	S, Cu	Ni-Sulphate	1	1	1.0	1.1	0.2										
6	1	77.26	37.77				Ni, O		Cu	Ni-Sulphate	1	2	2.0	1.6	0.4										
7	1	79.26	37.54	MAR10-3			Ni, S, O			Ni-Sulphate	3	1	3.0	2.0	0.6										
8	1	90.36	37.85	MAR10-4			Ni, O			Ni-Oxide(?)	2	1	2.0	1.6	0.4										
9	1	83.35	37.97	MAR10-5			Ni, S, O			Ni-Sulphate	2	2	4.0	2.3	0.8										
10	1	75.48	37.93				Ni, O	Cu, S, Pb	Fe	BM-Sulphate	2	4	8.0	3.2	1.6										
11	1	76.77	38.41	MAR10-6			Ni		0	Ni-Oxide(?)	4	3	12.0	3.9	2.4										
12	1	78.42	38.66	MAR10-7			Ni	Cu, S	O,Pb, Fe	BM-Sulphate	2	2	4.0	2.3	0.8										
13	1	78.88	38.78				Fe, Ni, S			Pentlandite	15	15	225.0	16.9	45.0										
14	1	82.2	38.68	MAR10-8			Ni, S	0	Fe	Ni.Fe-Sulphate]	8	8	64.0	9.0	12.8										
15	1	83.17	38.69	MAR10-9			Ni, S			Ni3S2	2	5	10.0	3.6	2.0										
16	1	84.29	38.64	MAR10-10			Ni		0	Ni-Oxide(?)	4	2	8.0	3.2	1.6										
17	1	90.36	38.68	MAR10-11			Ni, S	Cu, Pb	Fe	BM-Sulphate	2	2	4.0	2.3	0.8										
18	1	90.04	39.11				Cu, S			Cu2S	4	4	16.0	4.5	3.2										
19	1	82.08	38.98	MAR10-12			Ni, O		Fe	Ni>Fe-Oxide	2	2	4.0	2.3	0.8										
20	1	80.24	38.94				Cu, Ni		O,Pb, S	Ni-Cu-O(?)	2	2	4.0	2.3	0.8										
21	1	78.36	39.11				Ni, Pb		CI, S	BM-Sulphate	6	6	36.0	6.8	7.2										
22	1	77.88	39.31	MAR10-13			Ni, S			Ni3S2	1	1	1.0	1.1	0.2										
23	1	86.02	39.47				Fe, Ni, S			Pentlandite	3	6	18.0	4.8	3.6										
24	1	84.03	39.64				Cu, S			Cu2S	1	3	3.0	2.0	0.6										
25	1	78.75	39.63	MAR10-14			Ni, S			Ni3S2	2	2	4.0	2.3	0.8										
26	1	74.87	39.55				Fe, Ni, S			Pentlandite	2	2	4.0	2.3	0.8										
27	1	75.7	39.79				Fe	Ni, S	O,Cu	BM-Sulphate	4	2	8.0	3.2	1.6										
28	1	76.36	39.78				Fe, Ni, S			Pentlandite	6	6	36.0	6.8	7.2										
29	1	76.86	39.83				Ni		O,Cu	Ni-Cu-Ox(?)	2	2	4.0	2.3	0.8										
30	1	78.32	39.94	MAR10-15			Ni, S		Fe,O, Cu	BM-Sulphate	2	2	4.0	2.3	0.8										
										Sum/Avg.			500.0	3.4	100.0										

SAMPLE TRA NOV 29.03 PM10

Site #	Gr #	Loc.	(SEM)	Photo ID		Particle Data												Host Particle Data							
		x	Y		Occurrence	Association	Major	Mod	Minor	ID	Meas. X (um)	Meas. Y (um)	area (um2)	Grain ECD (um)	% distr	Host Phase	Host Meas. X (um)	Host Meas Y (um)	Meas area (um2)	Host ECD. (um)					
1	1	43.2	72.8	NOV29-1			Ni	0	Fe	Ni>Ee-Oxide	4	4	16.0	4.5	2.7										
2	1	43.2	72 89				Fe. Ni. S	-		Pentlandite	4	4	16.0	4.5	2.7				r						
3	1	44.7	72.86	NOV29-2			Ni, S			Ni3S2	1	2	2.0	1.6	0.3										
4	1	44.6	72.96				Fe, Ni, S			Pentlandite	8	8	64.0	9.0	10.9										
5	1	44.9	72.75				Ni, Cu		S, Fe, Cl	MS(C)I?	4	4	16.0	4.5	2.7										
6	1	46.9	72.87				Fe, Ni, S			Pentlandite	3	3	9.0	3.4	1.5										
7	1	46.5	73				Fe, Ni, S			Pentlandite	6	4	24.0	5.5	4.1										
8	1	50.6	72.82	NOV29-3			Ni		0	Ni-Oxide	10	6	60.0	8.7	10.3										
9	1	54.2	72.71				Fe	Ni	Cu, S	CuS/Fe-Ni-Ox	4	4	16.0	4.5	2.7										
10	1	54.4	72.73	NOV29-4			Ni		0	Ni-Oxide	6	6	36.0	6.8	6.2										
11	1	54.9	72.6				Fe, Ni, S			Pentlandite	2	2	4.0	2.3	0.7										
12	1	56.1	72.79				Fe, Ni, S		Cu	Pentlandite + Cp?	2	2	4.0	2.3	0.7										
13	1	57.3	72.74				Fe, Ni, S			Pentlandite	2	2	4.0	2.3	0.7										
14	1	56.3	73.01				Fe, Ni, S			Pentlandite	1	1	1.0	1.1	0.2										
15	1	56.3	73.01	NOV29-5			Ni		0	Ni-Oxide	2	2	4.0	2.3	0.7										
16	1	56.3	73.08				Fe, Ni, S			Pentlandite	1	4	4.0	2.3	0.7										
17	1	52.4	73.16				Fe, Ni, S			Pentlandite	4	4	16.0	4.5	2.7										
18	1	49.8	73.02				Fe, Ni, S			Pentlandite	2	2	4.0	2.3	0.7										
19	1	49.1	73.07				Fe, Ni, S			Pentlandite	2	2	4.0	2.3	0.7										
20	1	44.6	72.96				Fe, Ni, S			Pentlandite	10	10	100.0	11.3	17.1										
21	1	42.8	73.08				Fe, Ni, S			Pentlandite	6	10	60.0	8.7	10.3										
22	1	45.4	73.49	NOV29-6			Se	Cu	0	Cu-Se-O	2	2	4.0	2.3	0.7										
23	1	46.1	73.3				Fe, Ni, S			Pentlandite	1	1	1.0	1.1	0.2										
24	1	46.9	73.28				Fe, Ni, S			Pentlandite	2	2	4.0	2.3	0.7										
25	1	49.9	73.36				Cu, S			Cu2S	2	2	4.0	2.3	0.7										
26	1	57.2	73.44	NOV29-7			Ni		0	Ni-Oxide	2	4	8.0	3.2	1.4										
27	1	57	73.72				Fe, Ni, S			Pentlandite	2	4	8.0	3.2	1.4										
28	1	56.4	73.6	NOV29-8			Ni		0	Ni-Oxide	6	6	36.0	6.8	6.2										
29	1	55.8	73.69				Fe, Ni, S			Pentlandite	4	4	16.0	4.5	2.7										
30	1	53.8	73.57	NOV29-9			Ni, S		Co	Ni3S2	6	6	36.0	6.8	6.2										
30	2	53.8	73.57	NOV29-9			Ni		0	Ni-Oxide	2	2	4.0	2.3	0.7										
										Sum/Avg.			585.0	4.2	100.0										
DATE

SAMPLE TRA SEP 0.04 PM10

FRACTION

Site #	Gr #	Loc.	(SEM)	Photo ID	Particle Data									Host Particle Data						
		×	v		Occurrence	Association	Major	Mod	Minor	П	Meas. X (um)	Meas. Y (um)	area	Grain ECD (um)	% distr	Host Phase	Host Meas.	Host Meas	Meas area (um2)	Host ECD.
		Ê	<u> </u>		Occurrence	Association	Wajoi	NICO	MITIO		X (uni)	i (uiii)	(umz)	(uni)	76 uisu	Thase	X (uni)	r (uni)	(umz)	(uni)
1	1	9.06	75.51				Cu	Fe, S	Ni	MS	1	2	2.0	1.6	0.2					
2	1	9.75	75.59	SEP30-1			Ni, S			Ni3S2	2	2	4.0	2.3	0.4					
3	1	971	75.7				Cu, S	Fe	Ni	MS	6	6	36.0	6.8	3.2					
4	1	9.71	75.7				Cu, S	Fe	Ni	MS	2	2	4.0	2.3	0.4					
5	1	10.21	75.5	SEP30-2			Ni		0	Ni- Oxide	30	25	750.0	30.9	66.4					
6	1	10.49	75.45				Cu, S			Cu2S	6	4	24.0	5.5	2.1					
7	1	10.77	75.59				Fe, Cu, S	Ni		MS	2	2	4.0	2.3	0.4					
8	1	12	75.45				Fe, Ni, S			Pentlandite	2	2	4.0	2.3	0.4					
9	1	11.88	75.38				Cu, S			Cu2S	6	6	36.0	6.8	3.2					
10	1	12.08	75.53	SEP30-3			Ni		0	Ni-Oxide	2	2	4.0	2.3	0.4					
11	1	12.58	75.55	SEP30-4			Ni, S		Fe	Ni3S2	3	3	9.0	3.4	0.8					
12	1	12.86	75.45				Fe, Ni, S		Cu	MS	10	10	100.0	11.3	8.8					
13	1	13.15	75.53				Fe	Cu	Ni, S	MS/Mt	2	2	4.0	2.3	0.4					
14	1	13.32	75.62				Fe	Ni, S	Cu	MS/Mt	5	5	25.0	5.6	2.2					
15	1	14.56	75.39				Cu, S	Fe	Ni	MS	1	2	2.0	1.6	0.2					
16	1	15.49	75.44				Cu, Ni	Fe, S		MS	2	2	4.0	2.3	0.4					
17	1	17.7	75.45	SEP30-5			Ni		0	Ni-Oxide	2	2	4.0	2.3	0.4					
18	1	17.67	75.49				Cu, S			Cu2S	2	2	4.0	2.3	0.4					
19	1	19.17	75.5	SEP30-6			Ni, S		Fe	Ni3S2	4	2	8.0	3.2	0.7					
20	1	19.92	75.49				Cu	Fe, S	Ni	MS	4	2	8.0	3.2	0.7					
21	1	20.36	75.54	SEP30-7			Ni, S	0	Fe	Ni3S2	2	2	4.0	2.3	0.4					
22	1	20.36	75.54	SEP30-8			Ni, S		Fe	Ni3S2	2	2	4.0	2.3	0.4					
23	2	20.78	75.5				Cu			Metal	4	4	16.0	4.5	1.4					
23	1	20.78	75.5	SEP30-9			Ni, S		Fe	Ni3S2	2	2	4.0	2.3	0.4					
24	1	23.16	75.43				Cu, S	Fe	Ni	MS	3	2	6.0	2.8	0.5					
25	1	24.08	75.4	SEP30-10			Ni	0	Fe	Ni-Oxide	4	2	8.0	3.2	0.7					
26	1	25	75.37				Cu, S	Fe	Ni	MS	2	2	4.0	2.3	0.4					
27	1	25.73	75.49				Ni, Fe, S			Pentlandite	2	2	4.0	2.3	0.4					
28	1	22.65	75.87				S			MS	4	4	16.0	4.5	1.4					
29	1	19.2	75.79	SEP30-11			Ni, S		Fe	Ni3S2	6	4	24.0	5.5	2.1					
30	1	14.54	75.69	SEP30-12			Ni		0	Ni-Oxide	2	2	4.0	2.3	0.4					
										Sum/Avg.			1130.0	4.3	100.0					

Glenn Ferguson Program director/Senior Scientist Cantox Environmental

17-April-06

Dear Glenn,

Please find enclosed a report on the measurements carried out on dust and air filter samples at the National Synchrotron Light Source (NSLS, [http://www.nsls.bnl.gov/]) at Brookhaven National Laboratory (BNL) in April, 2006 and at the Synchrotron Radiation Center (SRC, [http://www.src.wisc.edu/]) at the University of Wisconsin-Madison, in March, 2006. A description of all sample and reference compounds, as well as the measurement parameters are listed in Tables 1 and 2.

The measurements were focused on identifying the sulfur nickel speciation in the air filter samples provided using X-ray Absorption Near-Edge Structure (XANES) spectroscopy at the Ni and S K-edge.

Aerosol sample 722 and dust sample 822 were previously measured at the sulfur K-edge (last report).

Briefly, it was found that the air filter samples contained large quantities of sulfate and the primary mineral pyrrhotite. The dust samples were a little more complicated with respect to their sulfur and nickel speciation. The dust contained sulfur in sulfate form and sulfur in organic forms. Most of the nickel in the dust and air filter samples was present as nickel oxide and nickel sulfate.

If you have questions about the report or if there is any aspect of the report you would like clarified or expanded upon please contact me. Sincerely,

Jeff Warner

Jeff Warner, Ph.D Industrial Liaison Scientist Canadian Light Source, Inc. tel. 306.657.3568

jeff.warner@lightsource.ca

Speciation of 10 Interior Dust and Air Filter Samples using Ni and S K-edge XANES Spectroscopy

April 17, 2006

Introduction

The experimental and theoretical details of x-ray absorption near edge structure (XANES) spectroscopy have been described in the literature (Stern and Heald, 1983). The technique has gained popularity recently due to increased accessibility to synchrotron radiation and advances in the state of XAS theory and data analysis methods.

Unfortunately, the analytical power of the above techniques is diminished when the system under investigation is a heterogeneous mixture of species. In this situation, each absorbing element may have different local coordination environments. This complicates the analysis because the number of structural parameters needed to describe the data properly may exceed the number of independent data points in the experimental spectrum. One method which has been developed to analyze complex mixtures is least squares linear combinations of model compound spectra to fit an unknown sample spectrum (O'Day, et al., 2004; Ressler, 2000).

Sample Descriptions

The standard and unknown samples were measured at the S K-edge and at the Ni K-edge samples. Sulfur K-edge measurements were measured at the CSRF double crystal beamline (1500-4000 eV) at the Synchrotron Radiation Center (SRC), University of Wisconsin, Madison. The SRC operates at 800 MeV with currents of 260 mA. Nickel K-edge measurements were measured on beamline X11A at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory, NY. The NSLS operates at 2.8 GeV with currents of 280 mA.

XANES measurements were made on a total of twelve unknown samples (Tables 1 and 2) consisting of five nickel-bearing air-filter samples with designations TRA JUL02.04PM10, TRA MAR10.04PM10, TRA SEP30.04PM10, TRA NOV29.03PM10. TRA JAN04.04PM10, and air filter sample [200 4040722]. In addition, five dust samples with designations, 502 57824, 523 57797, 582 05-1307, 600 57810, 602 05-1311 and dust sample [540 57822] were measured. Portions of the air filter not exposed to particulate were used as blanks.

Materials and Methods

Ni K-edge (8333 eV) spectra were recorded on beamline X11A at the NSLS at Brookhaven National Laboratory. The storage ring was operating at 2.8 GeV with a current of 280 mA. Beamline X11A utilizes a 1.36 T bending magnet as a source. The beamline was equipped with a Si(111) double crystal monochromator. Higher harmonics of the incident beam were rejected by detuning the second monochromator crystal by 50% for nickel. Entrance slits defined the beam size at 0.8x9 mm.

Transmission data were collected from powder samples diluted with boron nitride (~1:20) under ambient pressure and temperature. Unknown compound spectra were collected using a fluorescence ion chamber detector (Lytle et al., 1984) filled with argon gas and employing a Co (3 μ absorbance) filter and Soller slits to minimize unwanted

elastic scattering. X11A was calibrated using Ni foil, defining the Ni K-edge at 8333 eV (McMaster et al., 1969).

Sulfur K-edge (2472 eV) spectra were recorded on the high vacuum DCM beamline at the SRC located at the University of Wisconsin, Madison. The storage ring, Aladdin, was operating at 800 MeV with a current of 260 mA. The DCM beamline utilizes InSb monochromator crystals over the energy range 1500 - 4000 eV. Spectra were collected in fluorescence mode using a 9 element Ge detector. The DCM was calibrated using freshly cleaved pyrite.

Air filter samples were prepared by carefully cutting strips of air filter ($\sim 3x10$ mm) while wearing gloves and loading these in a Teflon sample holder contained using kapton tape. Spectra contained in this report were obtained on five such strips layered together.

Raw Ni K-edge and S K-edge data were processed using the program *Athena* (v. 0.8.045; Ravel and Newville, 2005). Least squares linear combination fits were applied to the XANES spectra also using the program SixPack (Webb, 2002).

PCA and LC Fitting

Least squares linear combination fitting was used to identify the species in the unknown samples. This technique fits the unknown spectra with weighted mixtures of model compounds. We have mentioned in previous reports that it is limited by the presence of unique spectral features in either the unknown or the model compounds. This can often limit the technique to an accuracy of $\pm 10\%$ depending on the number and identity of species present.

The technique was applied over two separate data ranges for the sulfur K-edge data. The unknown data could be divided into two ranges; 2464-2477 eV and 2477 to 2486 eV. Various sulfur model compounds were used to aid in identifying the sulfur speciation (Table 1). The nickel K-edge data were fit over the range 8325-8375 eV.

The data was carefully calibrated and therefore energy position of the models was not allowed to vary during the fits. The only constraint applied to the data was to fit with positive numbers. For both series of fits the reduced chi square was used to monitor the quality of the fit.

Results and Discussion

Figure 1 (top) shows the experimental beamline at the SRC. Prominent in the picture is the multi-element detector used for measuring fluorescence radiation from the unknown samples. The bottom picture in Figure 1 is the experimental set-up at beamline X11a at the National Synchrotron Light Source (NSLS).

Figure 2 shows the normalized sulfur K-edge XANES spectra for all the sulfur reference compounds measured in this investigation pentlandite ((Fe,Ni)₉S₈), pyrrhotite (Fe_{1-x}S), chalcopyrite (CuFeS₂), nickel sulfate (NiSO₄.6H₂O), nickel sulfide (NiS), nickel subsulfide (Ni₃S₂). Each of the reference compounds was tested as an appropriate component of the unknown air filter samples.

Principal component analysis (PCA) was applied to the sulfur K-edge XANES measurements. If it is assumed that the aerosols contain the same components then PCA indicates that there are two or three unique chemical species in the samples. One of the components is a sulfate species. PCA was not sensitive enough to indicate what the second or third species might be. Results from PCA applied to the dust samples resulted in more uncertainty in the number of components (as indicated by the IND function) but seemed to indicate three or four components. These results are supported by visual inspection of the aerosol and dust S K-edge spectra. The interior dust samples have more complicated spectra, in general.

PCA was also applied to the aerosol and dust Ni K-edge spectra but in general the results were more difficult to interpret. There is less variation in the energy position (chemical shift) of species at the Ni K-edge compared to the S K-edge.

Sulfur K-edge XANES

Two of the aerosol samples (Ajan0404 and Amar1004) showed no evidence for any species being present other than sulfate (Figures 3 and 4). Samples Anov2903 and Asep3004 had a small peak in the S K-edge XANES (Figures 3 and 4) at about 2470 eV. Sample Ajul0204 also shows a possible peak in this area of the spectrum but the data is noisy.

Fits of these spectra are listed in Table 3. Best fits of all the unknown aerosol samples were with sulfate and pyrrhotite (Fe_{1-x}S). The pyrrhotite is responsible for the small peak around 2470 eV. Several other species were tested for fits in this region including NiS, Ni₃S₂, chalcopyrite and pentlandite. Pyrrhotite gave the lowest reduced chi-square value (χ^2)_{red}, a measure of the quality of the fit. The fractional weight percent of species were determined by fitting the spectra over the range 2464 to 2477 eV. The pyrrhotite fit to the data was significantly better than either nickel sulfide or nickel subsulfide.

The dust samples do not have significant absorption at 2470 eV but all show a peak centered at 2472.5 eV and some samples (D824, D307 and D797) have an additional small peak at 2475.5 eV. Sample D307 does have a shoulder around 2470 eV. The 2472.5 eV peaks fits as some form of organic sulfur, either thiophene, thiol, sulfoxide, or disulfide. In Table 3 these are grouped under thiosalicylic acid, which had approximately the same peak position as the thiophene and L-cystine model compounds used. The peak at 2475.5 eV is not represented by any of the mineral or organic model compounds measured (including pyrrhotite, chalcopyrite or the nickel sulfides – pentlandite, Ni_3S_2 or NiS) but there is significant organic sulfur present.

Sample D307 (Table 3 and Figure 5) is different from the other dust samples in that it has a low energy shoulder located at about 2470 eV. This small feature coincides with peaks characteristic of sulfides. The best fit (shown in Figure 5) is with nickel subsulfide. The total fit of D307 does not match the amplitude of the experimental data resulting in a poor fit (Figure 5), possibly due to the lack of model compounds (other sulfates, etc.) that may contribute to the total spectrum. The shape determined by the fit in Figure 5 however, does mimic the experimental data quite well. Spectral fits using nickel sulfide (NiS) and primary minerals like pentlandite, pyrrhotite and chalcopyrite had a much higher chi-squared value.

Nickel K-edge XANES

Nickel K-edge XANES spectra of model compounds are shown in Figure 6 and the unknown aerosol and dust samples in Figure 7. Results of fitting these spectra are listed in Table 4.

The Ni K-edge XANES of the aerosol and dust samples are quite similar. There is not much shifting of the main peak at 8350 eV, the major difference seems to be the peak at 8366 eV. The model compounds vary significantly more with the sulfides being quite flat and relatively featureless. As a result of this, a main feature of the fitting procedure was to add a linear component to the fits to see if this compensated for normalization differences among the compounds. Although normalization was done very carefully, slight differences in the background of the unknowns, which occurs frequently depending on their concentration, can affect the overall amplitude of the fit. Featureless spectra (like the sulfides) can then deceive the fit by merely adding amplitude and not actually being a component of the sample. Another feature of linear combination fitting (and fitting in general) is that by adding more parameters it is easier to get a better fit but this comes at the expense of surpassing the actual information content of the spectra. In most cases with tha unknown samples (Table 4), adding such a linear component eliminated the need of adding another chemical component. A wide data range, 8300 – 8407 eV, was used to fit the data because certain of the model compounds have broad peaks in the region of 8390 eV.

Table 4 lists the fitted percentages of model components to the air and dust samples as well as the reduced chi-square value for the fit. The reduced chi-square is a useful guide for choosing the appropriate fit but the lowest value is not necessarily the true fit. In Table 4 the fit with the lowest reduced chi-square is shown, if another fit was within 20% of the best fit then its fit is also shown in Table 4 (in square brackets).

The air filter samples generally contained nickel oxide and nickel sulfate. Sample Nov29.03 was also fit with nickel sulfide. The dust samples were more varied, four were fit with NiS, one with Ni₃S₂, and one (D311) did not contain any sulfate.

The fit to D822 was consistent with nickel oxide, sulfate and nickel sulfide. The S K-edge fits (last report) on this sample indicated it was about 50/50 sulfate and organic sulfur species. That fit was verified during the analysis of this data set. These results can only be made consistent with knowledge of the total amounts of Ni and S in the sample. For example it is possible that a large portion of the Ni is bound as a sulfide but this represents only a small portion of the total sulfur.

The Ni K-edge XANES spectral fit of sample D307 indicates the presence of nickel sulfide rather than nickel subsulfide. This suggests that the S K-edge fit (Table 3) that uses nickel sulfide might be the more accurate fit. Two fits are shown in Table 3 because these could not be distinguished in terms of one being better than the other.

Conclusions

Linear combination fitted values for component percentages of sulfur and nickel species are found in Tables 3 and 4, respectively. Aerosol sample 722 and dust sample 822 were previously measured at the sulfur K-edge (last report).

It was found that the air filter samples contained large quantities of sulfate and the primary mineral pyrrhotite. Dust samples contained sulfur in sulfate form and sulfur in organic forms. Most of the nickel in the dust and air filter samples was present as nickel oxide and nickel sulfate and in some cases nickel sulfide.

Acknowledgements

Use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

This work is based upon research conducted at the Synchrotron Radiation Center, University of Wisconsin-Madison, which is supported by the NSF under Award No. DMR-0084402.

References

- McMaster, W.H.; Del Grande, N.K.; Mallett, J.H.; Hubbell, J.H.; Compilation of X-ray Cross Sections, Lawrence Livermore National Laboratory Report, UCRL-50174 section II rev. 1 (1969)
- O'Day, P.A.; Rivera, Jr., N.; Root, R.; Carroll, S.A.; X-ray absorption spectroscopic study of Fe reference compounds for the analysis of natural sediments. *Amer. Mineral.*, 89, 572 (2004)
- Ravel, B. and Newville, M., Athena, Artemis, Hephaestus: B. J. Synchrotron Rad. (2005), 12:4, pp. 537-541.
- Ressler, T.; Wong, J.; Roos, J.; Smith, I.L., Quantitative speciation of Mn-bearing particulates emitted from autos burning (methylcyclopentadienyl)manganese tricarbonyl-added gasolines using XANES spectroscopy. *Environ. Sci. & Technol.* 34, 950, (2000)
- Stern, E,.A. and Heald, S.M., *in* Handbook on synchrotron Radiation, ed. E.E. Koch (North-Holland, Amsterdam, 1983), Vol. 1, chap. 10
- Webb, S., SixPack v.0.53, http://www.stanford.edu/~swebb, (2002)

pure reference compounds (Ni K-edge)									
sample	formula	# scans	detection mode	source					
nickel sulfide	NiS	2	transmission	Alfa Aesar					
nickel metal	Ni	2	transmission	NiPERA repository					
nickel	NiCO ₃	2	transmission	Alfa Aesar					
carbonate	-								
nickel	Ni ₃ S ₂	2	transmission	NiPERA repository					
subsulfide									
nickel sulfate	NiSO ₄ .6H ₂ O	2	transmission	Alfa Aesar					
nickel	NiCl ₂	2	transmission	Alfa Aesar					
chloride									
pentlandite	(Fe,Ni) ₉ S ₈	4	transmission	ITSL process					
•	, , , , , , , , , , , , , , , , , , ,			mineralogy (Ford)					
nickel oxide	NiO	2	transmission	Sigma-Aldrich					
unknown samp	les								
sample	form	# scans	detection mode	comments					
502 57824	dust sample	6	fluorescence	D824					
523 57797	dust sample	6	fluorescence	D797					
582 1307	dust sample	8	fluorescence	D307					
600 57810	dust sample	8	fluorescence	D810					
504 57822	dust sample	3	fluorescence	D822					
602 05-1311	dust sample	10	fluorescence	D311					
200 4040722	dust sample	8	fluorescence	A722					
TRA JUL02.04	air filter	8	fluorescence	Ajul0204					
TRA MAR10.04	air filter	8	fluorescence	Amar1004					
TRA SEP30.04	air filter	5	fluorescence	Asep3004					
TRA NOV29.03	air filter	8	fluorescence	Anov2903					
TRA JAN04.04	air filter	8	fluorescence	Ajan0404					

Table 1. Description of samples measured at the Ni K-edge at Beamline X11A (NSLS)

pure referenc	pure reference compounds (S K-edge)									
sample	formula	# scans	detection mode	source						
nickel sulfide	NiS	2	fluorescence	Alfa Aesar						
elemental	S	2	fluorescence	Aldrich						
sulfur										
nickel	Ni3S2	2	fluorescence	NiPERA repository						
subsulfide										
pentlandite	(Fe,Ni) ₉ S ₈	3	fluorescence	ITSL process						
1	()))			mineralogy (Ford)						
pyrrhotite	Fe _{1-x} S	2	fluorescence	ITSL process						
	0.5.0			mineralogy (Ford)						
chalcopyrite	CuFeS ₂	1	fluorescence	TISL process						
thiocalicylic	0405	1	fluorescence	Aldrich						
unosancync	C7H6O23	1	nuorescence	Alunion						
		1	fluorocomoo	Aldrich						
L-cystine	$C_6H_{12}O_4N_2S_2$		fluorescence	Aldrich						
nickel sulfate	NiSO ₄ .6H ₂ O	2	fluorescence	Alfa Aesar						
sodium sulfite	Na ₂ SO ₃	2	fluorescence	Alfa Aesar						
sodium	$Na_2S_2O_3$	2	fluorescence	Alfa Aesar						
thiosulfate										
unknown sam	ples									
sample	form	# scans	detection mode	comments						
502 57824	dust sample	4	fluorescence	D824						
523 57797	dust sample	2	fluorescence	D797						
582 1307	dust sample	1	fluorescence	D307						
600 57810	dust sample	2	fluorescence	D810						
602 05-1311	dust sample	2	fluorescence	D311						
TRA JUL02.04	air filter	3	fluorescence	Ajul0204						
TRA MAR10.04	air filter	2	fluorescence	Amar1004						
TRA SEP30.04	air filter	3	fluorescence	Asep3004						
TRA NOV29.03	air filter	2	fluorescence	Anov2903						
TRA JAN04.04	air filter	3	fluorescence	Ajan0404						

Table 2. Description of samples measured at the S K-edge at the CSRF DCM (SRC)

sample	linear combination fits								
			(wt %	b)					
	SO4 ²⁻	pyrrhotite	thio- salicylic acid	S-S	NiS	Ni ₃ S ₂			
D824 [502 57824]	22		78						
D797[523 57797]	91		9						
D307[582 1307]	53		26		0	21			
	[53]		[34]		[13]	[0]			
D810 [600 57810]	83		17						
D311 [602 05-1311]	53		47						
D822 [504 57822] [#]	48		52						
A722 [200 4040722] [#]									
Ajul0204	61	39							
[TRA JUL02.04]									
Amar1004	>99	<1							
[TRA MAR10.04]									
Asep3004	54	46							
[TRA SEP30.04]									
Anov2903	71	29							
[TRA NOV29.03]									
Ajan0404	>99	<1							
[IRA JAN04.04]									

Table 3. S K-edge XANES spectra of unknown air filter and dust samples with linear combination (LC) fitted values.

* chalcopyrite (CuFeS₂), pentlandite ((Fe,Ni)₉S₈, pyrrhotite (Fe_{1-x}S), S-S denotes disulfide

the S K-edge spectra of these samples was done in the last report Note that numbers in brackets represent alternate fits

sample	linear combination fits (wt %)						
	NiO	NiS	Ni ₃ S ₂	NiSO₄			
			5-2				
D824 [502 57824]	35	35	0	29			
$(\chi^2)_{red}=$							
D797[523 57797]	22	54	0	24			
(χ ²) _{red} =0.0007							
D307[582 1307]	54	37	0	9			
(χ ²) _{red} =0.0015							
D810 [600 57810]	23	0	0	27			
$(\chi^2)_{red}=0.0029$							
D311 [602 05-1311]							
$(\chi^2)_{red} = 0.0009$	69	0	31	0			
$(\chi^2)_{red} = 0.0010$	[68]	[32]	[0]	0			
D822 [504 57822]	25	40	0	35			
$(\chi^2)_{red} = 0.0005$							
A722 [200 4040722]	40	0	0	60			
$(\chi^2)_{red}=0.0019$							
Ajul0204	87	0	0	13			
[TRA JUL02.04]							
$(\chi^2)_{red} = 0.0036$							
Amar1004	50	0	0	50			
[TRA MAR10.04]							
$(\chi^2)_{red}=0.0022$							
Asep3004	93	0	0	7			
[TRA SEP30.04]							
$(\chi^2)_{red}=0.0013$							
Anov2903	41	27	0	32			
[TRA NOV29.03]							
$(\chi^2)_{red} = 0.0003$							
Ajan0404	100	0	0	0			
[TRA JAN04.04]							
$(\chi^2)_{red}=0.0017$							

Table 4. Ni K-edge XANES spectra of unknown air filter and dust samples with linear combination (LC) fitted values.

а

b

Figure 1. The DCM beamline for measurement of the sulfur K-edge at the SRC in Madison, WI (a) and a picture of the experimental arrangement at X11A at the NSLS at Brookhaven National Laboratory.

Figure 2. Pre-edge subtracted and normalized XANES spectra of reference compounds measured at the sulfur K-edge. Note that the decreasing absorbance of thiophene was caused by volatilization under the x-ray beam.

Figure 3. Pre-edge subtracted and normalized XANES spectra of unknown samples measured at the sulfur K-edge.

Figure 4. Expanded region of Figure 3 between energies 2467 and 2477 eV containing pre-edge subtracted and normalized XANES spectra of sample unknowns measured at the sulfur K-edge.

Figure 5. Least squares linear combination XANES fit of sample D307. The black dotted line is the measured XANES spectrum, the red dashed line is the total fit and the other lines represent the component percentages (Table 3) of NiO, NiS and NiSO₄.6H₂O.

Figure 6. Pre-edge subtracted and normalized XANES spectra of reference compounds measured at the nickel K-edge.

Figure 7. Pre-edge subtracted and normalized XANES spectra of unknown samples measured at the nickel K-edge.

Metal Speciation Task Force Minutes of Second Speciation Conference Call May 8, 2006 10 – 11:30 pm

Participants:	
Inco	Bruce Conard and Glen Watson (observer)
Falconbridge	Marc Butler (observer)
MOE	Rusty Moody
SARA Group	Glenn Ferguson
SGS Research	Chris Hamilton
SDHU	Evert Niebor and Ido Vettoretti (observer)

A summary of the key discussions that took place during the meeting is provided below, in the approximate order that they happened. A package containing the reports representing all speciation work conducted to date was circulated to the participants in advance of the conference call/meeting.

Introductions and general discussion:

Glenn Provided an introduction on behalf of the SARA Group.

Goal of the meeting was to discuss the latest round of speciation analytical work conducted for the Sudbury Soils Study, and determine what conclusions (if any) can be drawn from these results.

Based on the previous round of discussions, the following additional speciation analyses have been conducted by both Canadian Light Source (CLS) and SGS:

- Five new PM10 filters from the Travers Street monitoring station (this station has been the primary focus of the second round of speciation analyses) were submitted to both SGS and CLS for further speciation analyses (SEM and XAFS, respectively). These samples were taken at different times of the year, and corresponded to differing wind directions: January 4th wind blowing from north; March 10th from south-southwest; July 2nd from north and east; September 30th from south-southwest; and, November 29th from west and north.
- Five indoor dust samples, previously identified as containing Ni3S2 by SGS were submitted to CLS for XAFS analyses.
- Two indoor dust samples previously identified as containing Ni3S2 by SGS were reanalyzed by SGS using a polished section investigation (as recommended in the previous task force meetings).

As a guide, the following questions were put forward to the group:

- 1. Is there any Ni3S2 present in the air filters at Travers Street? If so, can the overall percentage of Ni3S2, in relation to other nickel species (*i.e.*, nickel sulphate, oxides of nickel, *etc.*), be quantified?
- 2. If the percentage of Ni3S2 cannot necessarily be quantified, can the percentage of nickel sulphides be quantified (using either SEM or XAFS approaches)?
- 3. Is there Ni3S2 present in dust samples analyzed in the most recent round of analyses?
- 4. Are there any discrepancies in the results of the two forms of analytical approaches? If so, does this provide us with any additional information?
- 5. Is any additional analytical work warranted/necessary/helpful at this time?

Analysis by SGS Research

Chris As part of the polished section analyses, we only found single grain crosssection, that though very small, and was confirmed to be Ni3S2. Overall the grains were 3 microns and smaller. Results of photo-micrographs and observations of optical properties confirmed identification. Bruce Has no doubt that the particle you found in the polished section was Ni3S2. The question becomes, how much of the particulate nickel weight is Ni3S2 based upon that one particule in the field examined by SGS. If the number is very small, the question becomes whether CLS can see something that small. In Bruce's opinion, the two types of analyses don't necessarily disagree ... it is a matter of how sensitive you are going to be in your approach. The SGS approach of looking for grains is very sensitive, whereas the CLS approach of looking at the entire sample and trying to do linear combination of spectra to reveal a combination of compounds that could lead to the observed spectra is less sensitive. Each technique has advantages and disadvantages. Evert Would like Chris to comment on the number of particules examined relative to the total number of particles on the air sample to put it into perspective. Chris We looked at a minimum of 30 nickel particles, and likely in excess of 10,000 particles generically in the area of study. Of those 30 nickel particles, only one Ni3S2 particle was noted. Cautioned that one would need several hundred particles to properly quantify and give a more confident answer.

Rusty	What is the matrix of the air filter?
Chris	Silica fiber.
Rusty	So essentially a glass fiber. If the Ni3S2 is so small, is it possible you have particles buried in the filters you can't see, or pass right through?
Chris	Certainly, they could be buried at depth. However, any other nickel species are likely going to overwhelm and swamp trace amounts of Ni3S2.
Rusty	Suggests that in an absolute counting, we don't know how many particles are really in that filter.
Chris	Exactly. We are not counting the whole filter in the first place, and we are only looking at the upper most surface of the filter.
Bruce	The thing that one does in this kind of analyses is, you are really looking at a field and that field represents an area and you assume the area that the polished section goes through is representative of any particular slice through the filter. There are probably many Ni3S2 particles within the filter. That is not critical to the analysis, as long as you use the area of the field that you are examining in the polished section and ratio the occurrence of the one particle in that field. Then when you look at the volume, you will have the percentage of Ni3S2 particules within the volume as you see within this random section.
Chris	Exactly.
Glenn	Would it be possible to quantify the percentage of Ni3S2 present within the sample?
Chris	Based upon these results, we could go back and based upon the proportion of Ni species we could give a ratio of nickel sulphide as pentlandite to nickel sulfide as Ni3S2. Based upon the current results, it appears to be 10:1 ratio or higher. However, I would really need higher statistics than that through more SEM work to get a more accurate number.
Bruce	Chris, are you talking about 10:1 in terms of number of particles or the area in the field those particles represent?
Chris	In this case here, I am speaking of area.
Glenn	We would like to be able to get a percentage of Ni3S2 in the sample, or at least a range. Does the group think we can get that information from the current analyses?

- Bruce Believes the question is what other options do we have? Either we say we don't know anything and so we won't do cancer analysis of inhalation of nickel or we give a reasonable upper bound of the amount of Ni3S2 in ambient air. We have to take, at this point in time, some number, give it context, recognize that this is the information that exists nobody can fault you for this.
- Evert Believes there is not much difference between the slope factors, not orders of magnitude. As such, believes this discussion may be academic. Also believes there are uncertainties present in the analyses.
- Bruce Agrees that there are uncertainties present in the analyses and statistics used, but still a very useful bit of data for the HHRA.

Analysis by CLS

Unfortunately, Jeff Warner could not participate in the meeting due to technical difficulties.

Glenn	Points out that the SGS data indicated that when wind direction is taken into account in the latest round of analyses that Ni3S2 was identified when the wind was blowing from the west / southwest, and not when blowing from the opposite direction. However, the CLS data did not appear to exactly align with these results, and bears closer examination.
	Also, the CLS analyses of the samples on November 29 th and September 30 th showed a small peak which appeared to be sulfate and pyrrhotite. Any comment from the group as to what this indicated?
Bruce	Pyrrhotite is iron-deficient iron sulfide, which is able to bring nickel into its crystal lattice. So you find pyrrhotite can have some nickel in it not much, but some. Therefore, pyrrhotite can reveal nickel and sulphur in the CLS analyses. Pyrrhotite is present in Inco tailings, though there isn't much pyrrhotite left after smelting. Wind could pick up tailings, and the resuspended particles can contain some pyrrhotite. So its not unusual that an ambient air monitor would detect some pyrrhotite in Sudbury.
Glenn	Opens up discussion on CLS report to get impressions of call participants.
Bruce	When CLS says they see mainly sulfate and oxidic nickel, it is what everyone would expect to see in ambient air. However, if we assume arbitrarily that 75% is as sulfate and 23% is as oxidic. You add those two together, and you get 98%. So maybe 2% of the nickel is present as Ni3S2, and/or pentlandite, and/or pyrrhotite. The question becomes whether CLS can detect that on the shoulder of some other peak. So can

CLS determine at what concentration they will be able to detect small concentrations of Ni3S2.

- Glenn So we almost need a method detection limit.
- Bruce Yes, and they probably, with some more work, can tell us what they think their detection limit is. And it would be compound-specific and matrix-specific.
- Evert On page 5 of the report, they make the point that they need to know the total amount of nickel and dust in the sample. If one takes the data from the HHRA report, we are looking at very tiny amounts.
- Glenn This information can be easily provided to CLS.
- Glenn Does anyone have any comments on the CLS dust results?
- Evert Seems to indicate it is more consistent with nickel sulfide rather than nickel subsulfide.
- Glenn This is consistent with what they reported in previous analyses.
- Bruce The amount of Ni3S2 is not essential information for the assessing of oral ingestion of dust by toddlers. So he didn't believe that much more attention should be paid to speciation in dust, given we have information on the bioaccessibility of the dust already.
- Glenn One issue we are exploring right now is resuspension of dust within the home.
- Bruce Well, then the question would be how did you sample the dust? You sampled it with a very aggressive sampling, which would suck up particles trapped within the cracks of floors and wedged within rugs, and so the amount of nickel you have there in the dust sample, only a small fraction of that is susceptible for resuspension. It becomes very difficult without a particle size fraction to determine what fraction could be easily resuspended.
- Glenn Agreed. We have the same difficulties with it within the SARA Group. A final decision hasn't been made yet as to whether it will be included in final assessment.
- Evert Concerned from an epidemiological point-of-view that a lot of effort is being put into something that can't really be measured. He feels that the approach taken in the previous draft is reasonable and protective.

Bruce	Can we go back to CLS and ask them for a level of detection?
Glenn	Yes, that is on my todo list.
Bruce	Without doing any further polished section work, can SGS' results be used to estimate a reasonable upper limit of Ni3S2 relative to all nickel?
Glenn	Or even nickel sulfide as a whole?
Chris	Would be comfortable providing a ratio of pentlandite to Ni3S2, on the caveat that these are only limited statistics. Based upon the first samples, by area it comes to 4.5% Ni3S2 of all sulfides.
Bruce	That doesn't take into account the oxides and the sulphates?
Chris	No, it doesn't. As a scoping analyses, given the constraints, can provide the relative percentages of each grouping. Though there may be difficulty discriminating the sulfates.
Glenn	This would be very useful in the HHRA, even with the caveats.
Evert	Recommended looking at the MOE (2004) report on the development of air standards, which contains a table which shows the various species.
Glenn	Rusty, do you think this is a reasonable approach to assessing the risk – through subdividing the various species?
Rusty	It's worth a shot.
Glenn	Anyone have any other issues to raise?
Bruce	Based upon his review of the two latest reports, he doesn't believe that these two analytical techniques are in disagreement. This may not be the impression we have conveyed previously to the TC and other stakeholders. But the recent work shows that they are each saying nearly the same thing, and that it only comes down to an issue of detection. So it is important to communicate this issue.
Evert	Concurs, that it is a difference in sensitivity, and the two techniques are somewhat complementary.
Glenn	Thank you to all those involved in the meeting.

Meeting adjourned.

EMAIL CORRESPONDANCE

From: Jeff Warner [Jeff.Warner@lightsource.ca] Sent: Monday, May 22, 2006 8:42 PM To: Glenn Ferguson Subject: RE: SARA Report

Hi Glenn,

We have done a number of studies related to quantifying the amount of one species in mixtures with another closely related species to help us in understanding the quantification techniques (eg. silver, nickel and arsenic). I recently collected data here on 3 component mixtures of nickel at the Ni L-edge.

In the first report to Cantox [dated: November 23, 2005] we looked at mixtures of NiS and NiSO4 [Table 4, Figures 6 and 8]. Figure 8 in that report puts the detection limit in that matrix at 7%. This agrees well with most of our work of this type which generally puts the analysis detection limit between 5-10%. We have achieved, in cases where we have good supplementary information on the samples, accuracies of \sim 3%.

Just to go over your comments on the sample Anov2903. Our results indicate that 27% of the nickel species are in the form NiS (no Ni3S2 detected but 32% of the nickel occurs as the Ni sulfate). If we look at the sulfur measurements we see that that same sample has 71% of sulfur in the form of sulfate and 29% in the form of pyrrhotite, essentially an iron deficient sulfide. The results are consistent but without knowing the total amounts of nickel and sulfur cannot be cross-correlated. From that report, there is no detectable Ni3S2 in the aerosol samples.

I would place as a conservative upper bound the 7% value.

I hope this helps.

jeff

MEMO

- To: Glen Fergusson, CANTOX Environmental
- From: Chris Hamilton
- Date: 24 May, 2006

Copies:

Re: Quantifying Ni-sub-sulphide.

After much thought, there are potentially two ways of arriving at an estimate of the Ni reporting as sub-sulphide, namely:

- 1. Direct mineralogy
- 2. Combination of mineralogy & other.

Direct Mineralogy

This method consists of performing a surface scan as we have produced in the past. The method detects a certain number of particles and a record is made of the two-dimensional area of the particle (length * breadth) and a tally made of area scanned per mineral species. Results of the analyses from the 2 dust samples recently analysed are given in Table 1. The area is calculated for this Ni-bearing particle population (first caution: Low statistics!) and a percentage area (column 3) determined. Using known SG's (column 4), this data is converted to relative mass units (col 5) and from there, relative mass % for the population. This ratio (column 5) is best to use as the contained metal (column 7) and relative Ni distribution assumes compositions that may not be accurate.

This is an estimate only due to limited statistics and the fact that this work is biased towards higher atomic number species. Lower atomic number Ni-species (e.g. hydrous Ni sulphates) will likely go undetected in this method so the sulphate percentage may be totally misreported. The reported particles are also based on a given area scanned, and this may vary between samples, hence the use of relative proportions.

To counter this effect and to be more accurate, a significantly more exhaustive and costly method would be to perform what is known as a mass- or general particle scan. In this method, all particles encountered are recorded, which then gives a far more accurate accounting of all species but can take many hours to perform. I'd estimate this would take an order of magnitude longer to do relative to the specific scan method we have done to data. The abbreviated method has to date been used simply to record the relative volumetric ratios of heazlewoodite/sub-sulphide to other high atomic number species (pentlandite, Ni-oxide etc.), or simply record/confirm the presence of heazlewoodite.

Table 1. Dust Analysis Summary.

	1	Z	3	4	5	0	/	0
Dust 582-03-1307	Particles	Area		SG	Relative	Relative	Contained	Relative
	N	(um2)	Area %	g/cm3	Mass Units	Mass %	% Ni	Ni ratios
Pentlandite	8	392.2	23.3	5.1	118.83	24.8	34.2	8.5
Ni-Subsulphide	1	19.4	1.2	5.9	7.08	1.5	73.3	1.1
Ni-Oxide	4	697.7	41.4	6.8	281.52	58.8	78.6	46.2
Ni-Sulphate	4	573.4	34.1	2.1	71.61	14.9	22.3	3.3
			100.0		479.04			-
-								
Dust 602-05-1311	Particles	Area		SG	Relative	Relative	Contained	Relative
	N	(um2)	Area %	g/cm3	Mass Units	Mass %	% Ni	Ni ratios
Pentlandite	8	768	50.1	5.1	255.51	43.0	34.2	14.7
Ni-Subsulphide	1	20.3	1.3	5.9	7.67	1.3	73.3	0.9
Ni-Oxide	5	743.9	48.6	6.8	330.48	55.7	78.6	43.8
Ni-Sulphate	0	0	0.0	2.1	0	0.0	22.3	0.0
			100.0		593.66			

All of these assumptions and parameters would need to be cross-referenced against prior knowledge of the material. For example, we would ideally want to match mineral species with historic and other data from INCO etc., as the average Ni-content in Ni-oxides can be quite variable, and the exact type of sulphate may be critical. For the anhydrous oxides, they range from pure green-NiO (bunsenite), through to Ni-ferrite, for instance, and the finer grained one goes, the less accurate identification and characterization will be.

Combined Mineralogy/Other Methods

If the Synchrotron data can be satisfactorily be used to quantify relative ratios of pentlandite to oxide-Ni, and this data can be demonstrated to "converge" with the "abbreviated mineralogy" or a more detailed method as outlined above, that would be the "holy grail". I suspect, however, that the sensitivity of the synchrotron results is questionable. I would, therefore, recommend more detailed work and possibly even investigating the option of Transmission Electron Microscopy (TEM) as in the paper I previously sent you. Alternatively, a compromise between these methods may be to use a Field Emission Scanning Electron Microscope (The University of Waterloo has one) which has higher sensitivity and magnification which is better suited to identifying fine grained species.

Please call me if you need further clarification of the above.

Chris Hamilton Consulting Mineralogist SGS Minerals Technologies Lakefield Site

Detailed Speciation Results from SGS (May 24, 2006) Sudbury Soils Study

Residential Dust Sample Results

Particles	Area		SG	Relative	Relative	Contained	Relative	Normalized
N	(um2)	Area %	g/cm3	Mass Units	Mass %	% Ni	Ni ratios	Ni ratios
8	392.2	23.3	5.1	118.83	24.8	34.2	8.5	14.4
1	19.4	1.2	5.9	7.08	1.5	73.3	1.1	1.8
4	697.7	41.4	6.8	281.52	58.8	78.6	46.2	78.2
4	573.4	34.1	2.1	71.61	14.9	22.3	3.3	5.6
		100.0		479.04			59.1	100.0
	Particles N 8 1 4 4	Particles Area N (um2) 8 392.2 1 19.4 4 697.7 4 573.4	Particles Area N (um2) Area % 8 392.2 23.3 1 19.4 1.2 4 697.7 41.4 4 573.4 34.1 100.0 100.0	Particles Area SG N (um2) Area % g/cm3 8 392.2 23.3 5.1 1 19.4 1.2 5.9 4 697.7 41.4 6.8 4 573.4 34.1 2.1	Particles Area SG Relative N (um2) Area % g/cm3 Mass Units 8 392.2 23.3 5.1 118.83 1 19.4 1.2 5.9 7.08 4 697.7 41.4 6.8 281.52 4 573.4 34.1 2.1 71.61 100.0 479.04	Particles Area SG Relative Relative N (um2) Area % g/cm3 Mass Units Mass % 8 392.2 23.3 5.1 118.83 24.8 1 19.4 1.2 5.9 7.08 1.5 4 697.7 41.4 6.8 281.52 58.8 4 573.4 34.1 2.1 71.61 14.9 100.0 479.04	Particles Area SG Relative Relative Contained N (um2) Area % g/cm3 Mass Units Mass % % Ni 8 392.2 23.3 5.1 118.83 24.8 34.2 1 19.4 1.2 5.9 7.08 1.5 73.3 4 697.7 41.4 6.8 281.52 58.8 78.6 4 573.4 34.1 2.1 71.61 14.9 22.3 100.0 479.04	Particles Area SG Relative Relative Contained Relative N (um2) Area % g/cm3 Mass Units Mass % % Ni Ni ratios 8 392.2 23.3 5.1 118.83 24.8 34.2 8.5 1 19.4 1.2 5.9 7.08 1.5 73.3 1.1 4 697.7 41.4 6.8 281.52 58.8 78.6 46.2 4 573.4 34.1 2.1 71.61 14.9 22.3 3.3 100.0 479.04 59.1

Dust 602-05-1311	Particles	Area		SG	Relative	Relative	Contained	Relative	Normalized
	Ν	(um2)	Area %	g/cm3	Mass Units	Mass %	% Ni	Ni ratios	Ni ratios
Pentlandite	8	768	50.1	5.1	255.51	43.0	34.2	14.7	24.8
Ni-Subsulphide	1	20.3	1.3	5.9	7.67	1.3	73.3	0.9	1.6
Ni-Oxide	5	743.9	48.6	6.8	330.48	55.7	78.6	43.8	73.6
Ni-Sulphate	0	0	0.0	2.1	0	0.0	22.3	0.0	0.0
			100.0		593.66			59.4	100.0

*Assumes noted chemistry of Ni in phase (Col. 7)

Travers Street Monitoring Station - Air Filter Sample Results

TRA NOV 29.03	Particles	Area		SG	Relative	Relative	Contained	Relative	Normalized
	N	(um2)	Area %	g/cm3	Mass Units	Mass %	% Ni	Ni ratios	Ni ratios
Pentlandite	18	339	62.0	5.1	316.0694698	53.2	34.2	18.2	35.7
Ni-Subsulphide	2	44	8.0	5.9	47.45886654	8.0	73.3	5.9	11.5
Ni-Oxide	7	164	30.0	6.8	203.8756856	34.3	78.6	27.0	52.9
Ni-Sulphate		0	0.0	2.1	0	0.0	22.3	0.0	0.0
		547	100.0		567.4040219			51.1	100.0
			-	00					
IRA JAN 04.04	Particles	Area	Area 9/	SG	Relative	Relative	Contained	Relative	Normalized
	IN	(umz)	Area %	g/cm3	Mass Units	Mass %	% NI	INI ratios	NI ratios
Pentlandite		0	0.0	5.1	0	0.0	34.2	0.0	0.0
Ni-Subsulphide		0	0.0	5.9	0	0.0	73.3	0.0	0.0
NI-Oxide		0	0.0	6.8	0	0.0	78.6	0.0	0.0
Ni-Sulphate	30	178	100.0	2.1	210	35.4	22.3	7.9	100.0
		178	100.0		210			7.9	100.0
	Dortiolog	Aroo	1	80	Polotivo	Polotivo	Contained	Polotivo	Normalized
TRA WAR 10.04	N	(um2)	Area %	0/cm3	Mass Units	Mass %	% Ni	Ni ratios	Ni ratios
Pontlandita	5	(0112)	50.0	g/0110	201 1226611	50.7	24.2	17.2	60.3
Ni Subsulphido	3	15	31	5.0	19 200169/	3.1	72.2	22	7.0
Ni Ovido	7	36	7.5	5.5	50 80207080	9.6	79.6	6.7	7.3
Ni Sulphata	12	146	20.4	0.0	63 74220274	10.7	70.0	2.4	23.4
NI-Sulphate	15	481	100.0	2.1	434 1580042	10.7	22.3	28.8	100.0
		101	100.0		10111000012			20.0	100.0
TRA JUL 02.04	Particles	Area		SG	Relative	Relative	Contained	Relative	Normalized
	N	(um2)	Area %	g/cm3	Mass Units	Mass %	% Ni	Ni ratios	Ni ratios
Pentlandite	11	122	48.0	5.1	244.9606299	41.3	34.2	14.1	61.2
Ni-Subsulphide		0	0.0	5.9	0	0.0	73.3	0.0	0.0
Ni-Oxide	4	15	5.9	6.8	40.15748031	6.8	78.6	5.3	23.1
Ni-Sulphate	13	117	46.1	2.1	96.73228346	16.3	22.3	3.6	15.8
		254	100.0		381.8503937			23.1	100.0
TRA SEP 30.04	Particles	Area		SG	Relative	Relative	Contained	Relative	Normalized
	N	(um2)	Area %	g/cm3	Mass Units	Mass %	% Ni	Ni ratios	Ni ratios
Pentlandite	2	8	0.9	5.1	4.551641045	0.8	34.2	0.3	0.3
Ni-Subsulphide*	14**	118.38	13.2	5.9	77.91807046	13.1	73.3	9.6	11.0
Ni-Oxide	5	770	85.9	6.8	584.1272675	98.4	78.6	77.3	88.7
Ni-Sulphate	0	0	0.0	2.1	0	0.0	22.3	0.0	0.0
		896.38	100.0		666.596979			87.2	100.0

* Assumes the matte component is 33% Ni-Sub-sulphide (57 parts Ni3S2 + 186 parts Matte by area)

** One mono-mineralic Ni3S2 and 13 matte particles with essential Ni3S2***

*** Matte may in fact have substantially more Ni3S2 within; but 33% Ni3S2 is reasonable estimate: Best to change this according to known matte mineralogy.

Additional Speciation Work at the Laboratory for Environmental and Geological Studies (LEGS)

In conjunction with a second round of bioaccessibility analyses, five outdoor soil samples and nine indoor dust samples were submitted for Electron Microprobe Analysis (EMPA) at the Laboratory for Environmental and Geological Studies (LEGS) at the University of Colorado, Boulder This analyses was conducted using an electron microprobe (*i.e.*, JEOL 8600) equipped with four wavelength spectrometers, energy dispersive spectrometer (EDS), BEI detector and the Geller, dQuant data processing system. It is important to note, that due to limitations on available quantities of materials, these were not the same soil and dust samples that were tested in previous rounds of speciation analyses.

This round of speciation analysis focused primarily on arsenic, lead and nickel elements present within the soil or dust samples, and provided a detailed percentage breakdown of the specific species in relation to the overall mass of COC. Table 1 and 2 provide a composition breakdown by COC form on the five outdoor soil samples and nine indoor dust samples, respectively. The pages following these tables provide the detailed analysis results used to generate the summaries presented in Tables 1 and 2.

Results of the EMPA speciation appear to indicate a similar pattern as that observed in the previous rounds of speciation analyses. However, one set of observations in the current analyses does provide potential information for future risk management decision making. As noted previously, the primary form of lead identified by SGS Lakefield was in the form of anglesite (*i.e.*, lead sulphate), which is known to be an emission from smelting/refining sources. However, SGS did indicate that a major proportion of lead present in their limited number of samples could not be accounted for mineralogically, and pointed to other potential forms such as lead carbonate (refer to their detailed report in Appendix I). SGS suggested that more sophisticated techniques or methods could be applied to attempt to better isolate the forms present. However, as this was not a requirement of the risk assessment, it was not undertaken at that time.

However, results of the EMPA speciation work indicated that a significant percentage of the lead present in some of the dust samples analyses was in the form of cerussite (*i.e.*, lead carbonate). This form of lead was detected in most of the dust samples analysed (but none of the soil samples), and typically ranged between approximately 20 and 85% of the total lead present in the sample. This is of some risk management significance because cerussite, or "white lead", is a key ingredient in lead-based paints.

Table 1	Spe	cies Pe	ercenta	age Re	sults f	rom E	MPA	Specia	ntion o	f Resi	dentia	l Outd	oor So	oil San	ples
Form		Soil 1	Soil 2			Soil 3				Soil 4			Soil 5		
rorm	As	Pb	Ni	As	Pb	Ni	As	Pb	Ni	As	Pb	Ni	As	Pb	Ni
Anglesite															
Cerussite			ļ										ļ		
Chalcopyrite				0	0	0.25				0	0	0.14			
CrMO															
Cr-Ni metal	0	0	2.86												
CuMO															
FeCr metal															
FeOOH	89.47	63.49	3.01	90.83	90.43	5.45	95.04	62.91	4.49	97.43	88.37	6.06	87.31	2.47	4.34
FeS2	0	0.36	0.2	0	0.99	0.68	0	2.29	1.85	0	1.7	1.32	0	0.01	0.12
FeSiO2	8.28	29.6	4.27	0.72	3.6	0.66	2.67	8.91	1.94	0.22	1.01	0.21	8.49	1.21	6.48
FeSO4							0	0.51	0.43	0	2.51	2.01			
MnOOH	0.55	5.64	0.53	0.19	2.68	0.32									
Native Lead							0	24.97	0						
Ni metal													0	0	5.93
NiFeO	0.9	0.23	4.22	5.62	2.02	47.16	1.59	0.38	10.47				4.08	0.04	28.37
NiMCISO4															
NiMO	0.8	0.04	1.8	2.64	0.18	10.53	0.7	0.03	0	1.87	0.12	7.74	0.12	0	0.39
NiMS															
NiMSO4															
NiO	0	0	76.38	0	0	9.43				0	0	3.08	0	0	49.32
NiP															
NiS															
NiSO4				0	0.1	3.7				0	0.01	0.24			
Paint															
PbCrO4															
РЬМО															
PbMSO4															
PbTiO2															
PbO									1						
PbSiO4						•							0	96.27	0
Pentlandite	0	0	5.08	0	0	21.83	0	0	80.82	0	0	79.19	0	0	5.04
Phosphate			`		1				1	0.48	6.29	0.01	1		
Plumbobarite	1														
Slag	0	0.63	1.66						•••••••						
ZnMO															

Table 2		Speci	ies Po	ercen	tage	Resu	lts fr	om F	EMP	A Spe	eciati	on of	f Resi	ident	ial Ir	ndoor	Dus	t San	nples	(LE	GS						
Form		Dust 1			Dust 2			Dust 3			Dust 4			Dust 5	-		Dust 6	į		Dust 7			Dust 8		Dust 9		
	As	Pb	Ni	As	Pb	Ni	As	Pb	Ni	As	Pb	Ni	As	Pb	Ni	As	Pb	Ni	As	Pb	Ni	As	Pb	Ni	As	Pb	Ni
Anglesite	0	59.78	0																								
Cerussite	0	21.32	0	0	56.14	0	ļ			0	74.32	0	0	85.72	0	0	67.4	0	0	71.3	0	0	68.08	0			
Chalcopyrite										ļ			ļ				ļ	ļ				0	0	0.02	0	0	0.01
CrMO						ļ	ļ			ļ					ļ			ļ	ļ			0	0.63	2.06			
Cr-Ni metal	0	0	12.56			ļ	ļ			ļ			ļ		ļ			ļ	ļ			ļ					
CuMO							0	0	6.81	ļ			0	0	7.36	0	0	1.97	0	0	1.2	ļ			0	0	0.71
FeCr metal						ļ	ļ			ļ					ļ	0	0.01	0.34	0	0.06	0.46	ļ					
FeOOH	41.3	11.53	5.2	4.47	1.15	2.25	6.19	6.13	2.54	64.07	16.94	3.67	17.47	4.33	2.88	71.62	0.55	0.59	13.01	6.36	0.83	91.98	17.15	0.93	95.23	7.02	3.75
FeS2	0	0.07	0.38	0	0.1	2.14	0	0.25	1.18	0	0.1	0.25	0	0.16	1.24	0	0.15	1.86	0	0.63	0.93	0	1.86	1.15	0	0.52	3.18
FeSiO2				0.58	0.75	4.46	0.02	0.09	0.12	0.43	0.57	0.38	0.48	0.6	1.21	1.99	0.08	0.25	0.54	1.33	0.53	2.38	2.23	0.37	2.07	0.77	1.25
FeSO4	0	0.05	0.28				0	0.08	0.37	0	0.3	0.77	0	0.2	1.53	0	0.01	0.12	0	0.05	0.07	0	0.33	0.21	0	0.21	1.29
MnOOH						L	ļ								ļ				L								
Native Lead																											
Ni metal	0	0	6.21	0	0	5.97	0	0	10.89							0	0	8.61	0	0	7.99	0	0	56.11	0	0	18.78
NiFeO							0.03	0.01	1.96	0.62	0.06	4.96				11.18	0.03	12.79	0.35	0.06	3.13	2.05	0.14	2.91	1.55	0.04	8.52
NiMCISO4						ļ										9.41	0.04	2.53	ļ								
NiMO	1.35	0.03	11.3				0.68	0.05	18.63				0.89	0.02	9.72	5.8	0	3.16	0.22	0.01	0.94	2.5	0.03	1.69	1.15	0.01	3
NiMS																	ļ		0.7	1.63	2.93						
NiMSO4																	ļ					1.1	0.12	0.37			
NiO	0	0	4.77	0	0	25.77	0	0	30.48	0	0	11.64	0	0	10.6	0	0	33.06	0	0	25.68	0	0	15.18	0	0	29.48
NiP	0	0	10.27	0	0	7.52																					
NiS	0	0	13.76	0	0	33.04	0	0	16.51	0	0	68.3	0	0	17.47	0	0	11.92	0	0	40.75	0	0	3.98	0	0	7.42
NiSO4	0	0.08	21.45	0	0	1.23																					
Paint				0	0.88	0																					
PbCrO4				0	26.86	0				ļ							ļ										
РЬМО	57.35	7.14	0	94.31	10.86	0	92.17	40.73	0	34.14	4.03	0	81.16	8.98	0				85.19	18.58	0						
PbMSO4				0.65	1.4	0											ļ										
PbTiO2				0	1.85	0																					
PbO											,					0	31.31	0							0	78.15	0
PbSiO4							0	39.75	0																0	12.06	0
Pentlandite	0	0	13.82	0	0	17.63	0	0	10.41	0	0	10.03	0	0	47.99	0	0	22.08	0	0	14.58	0	0	15	0	0	22.55
Phosphate						ļ	0.91	12.92	0.12	0.74	2.82	0.01							0	0	0	ļ					
Plumbobarite							ļ			0	0.86	0				0	0.41	0	ļ			0	9.42	0			
Slag										ļ						0	0.01	0.72				ļ			0	0	0.03
ZnMO																									0	1.21	0.01

Detailed Speciation Results from LEGS (2007) Sample 512s (Outdoor Soil)

Form Association Size

Fe	Liberated	32	Form	Number	Mean	Std-Dev	Range low	Range high
Fe	Liberated	4	total	105	16.72	20.75	<u> </u>	105
Fe	Liberated	22	FeOOH	44	13.3	15.78	2	85
nio	Liberated	16	NiO	25	9.36	10.47	2	52
Fe	Liberated	50	FeSiO2	15	32.47	28.43	4	100
nio	Liberated	4	Cr-Ni metal	2	27	ND	1	27
FeSi	Liberated	30	FeS2	2	16	9.9	9	23
nio	Liberated	8	Pentlandite	3	14.33	10.69	5	26
nio	Liberated	5	NiMO	1	9	ND	9	9
nio	Liberated	7	NiFeO	6	7.67	3.33	3	11
Fe	Liberated	7	MnOOH	4	13	6.22	8	22
Fe	Liberated	10	Slag	3	80	22.91	60	105
Fe	Liberated	11	5					
Fe	Cemented	3						
FeSi	Liberated	4	Form	(linear) freq	rm As	rm Pb	rm Ni	error-95%
FeSi	Liberated	100	%	%	%	%	%	
Fe	Liberated	7	FeOOH	33.31	89.47	63.49	3.01	9.02
crnio	Liberated	27	NiO	13.33	0	0	76.38	6.5
ру	Liberated	23	FeSiO2	27.73	8.28	29.6	4.27	8.56
nio	Liberated	6	Cr-Ni metal	1.6	0	0	2.86	2.35
FeSi	Liberated	5	FeS2	1.82	0	0.36	0.2	2.56
nio	Liberated	4	Pentlandite	2.45	0	0	5.08	2.96
Fe	Liberated	7	NiMO	0.51	0.8	0.04	1.8	1.37
pent	Liberated	26	NiFeO	2.62	0.9	0.23	4.22	3.06
nio	Liberated	23	MnOOH	2.96	0.55	5.64	0.53	3.24
FeSi	Liberated	43	Slag	13.67	0	0.63	1.66	6.57
FeSi	Liberated	40	-					
Fe	Liberated	30						
Fe	Liberated	7						
Fe	Liberated	50						
Fe	Liberated	20						
FeSi	Liberated	80						
Fe	Liberated	13						
Fe	Liberated	18						
Fe	Liberated	4						
Fe	Liberated	8						
FeSi	Liberated	23						
Fe	Liberated	4						

Mn	Cemented	12
Mn	Cemented	10
Mn	Cemented	8
FeSi	Liberated	6
Fe	Liberated	9
FeSi	Liberated	50
nifeo	Liberated	10
Fe	Liberated	5
Fe	Liberated	12
FeSi	Liberated	7
Fe	Liberated	3
Fe	Liberated	7
Fe	Cemented	2
Fe	Liberated	4
Fe	Rimming	3
nio	Rimming	3
nifeo	Liberated	11
Fe	Liberated	4
Fe	Liberated	9
FeSi	Cemented	7
nio	Cemented	2
Slag	Liberated	105
Slag	Liberated	60
Slag	Liberated	75

Detailed Speciation Results from LEGS (2007) Sample 516s (Outdoor Soil)

Form Association Size

Fe	Liberated	9	Form	Number	Mean	Std-Dev	Range low R	ange high	
Fe	Liberated	4	total	101	17.2	24.11	2	135	
nifeo	Liberated	2	FeOOH	48	17.58	22.35	2	98	
Fe	Liberated	4	NiFeO	9	45.44	53.56	2	135	
Fe	Liberated	16	NiMO	3	14	11.27	7	27	
Fe	Liberated	45	FeSiO2	8	7.5	4.99	3	16	
nimo	Liberated	7	NiO	3	7.67	4.93	2	11	
Fe	Liberated	3	FeS2	6	14.67	11.15	4	35	
Fe	Cemented	2	Pentlandite	14	10.5	6.44	3	26	
FeSi	Liberated	9	Chalcopyrite	7	9.14	7.31	3	22	
FeSi	Liberated	10	MnOOH	2	12.5	0.71	12	13	
FeSi	Liberated	12	NiSO4	1	35	ND	35	35	
FeSi	Liberated	3							
FeSi	Liberated	3							
FeSi	Liberated	3	Form	(linear) freq	rm As	rm Pb	rm Ni		error-95%
Fe	Liberated	2	%	%	%	%	%		
Fe	Liberated	14	FeOOH	48.59	90.83	90.43	5.45		9.75
Fe	Liberated	6	NiFeO	23.55	5.62	2.02	47.16		8.27
Fe	Rimming	2	NiMO	2.42	2.64	0.18	10.53		3
nio	Liberated	10	FeSiO2	3.45	0.72	3.6	0.66		3.56
Fe	Liberated	3	NiO	1.32	0	0	9.43		2.23
Fe	Cemented	18	FeS2	5.07	0	0.99	0.68		4.28
nifeo	Liberated	26	Pentlandite	8.46	0	0	21.83		5.43
nio	Inclusion	11	Chalcopyrite	3.68	0	0	0.25		3.67
nio	Inclusion	2	MnOOH	1.44	0.19	2.68	0.32		2.32
nimo	Liberated	27	NiSO4	2.01	0	0.1	3.7		2.74
nifeo	Liberated	14							
Fe	Liberated	4							
FeSi	Liberated	4							
Fe	Liberated	28							
Fe	Liberated	13							
Fe	Liberated	4							
Fe	Liberated	9							
Fe	Liberated	11							
Fe	Liberated	11							
Fe	Cemented	32							
Fe	Liberated	48							

Fe	Liberated	7
pent	Cemented	14
pent	Liberated	10
pent	Liberated	26
pent	Cemented	12
pent	Cemented	12
pent	Cemented	12
pent	Cemented	15
pent	Cemented	5
Fe	Cemented	82
Fe	Liberated	25
nifeo	Rimming	115
nisio2	Liberated	35
Fe	Liberated	8
pent	Liberated	17
Fe	Liberated	85
ру	Liberated	11
Fe	Liberated	9
Fe	Liberated	13
nifeo	Liberated	135
nifeo	Liberated	95

Detailed Speciation Results from LEGS (2007) Sample 523s (Outdoor Soil)

Form Association Size

Liberated

Liberated

pent

Fe

80

Phos	Liberated	2	Form	Number	Mean	Std-Dev	Range low I	Range high	
nimo	Liberated	21	total	115	5 19.	5 18.15	1	88	
nimo	Liberated	16	Phosphate		2 4	4 2.83	2	6	
Fe	Liberated	12	NiMO		2 18.	5 3.54	16	21	
FeSi	Liberated	9	FeOOH	4	1 27.4	1 19.08	4	88	
pent	Liberated	6	FeSiO2		2 11.	5 3.54	9	14	
Fe	Rimming	7	Pentlandite	4	5 14.2	2 17.36	2	80	
pent	Liberated	7	NiSO4		1 :	3 ND	3	3	
pent	Liberated	35	FeS2	1:	5 13.73	3 11.47	1	45	
Fe	Liberated	35	FeSO4	Į	5 30.4	4 18.96	8	60	
Fe	Liberated	6	NiO		1 9	9 ND	9	9	
Fe	Cemented	32	Chalcopyrite		1 42	2 ND	42	42	
Phos	Liberated	6							
nisio2	Rimming	3							
ру	Liberated	5	Form	(linear) freq	rm As	rm Pb	rm Ni		error-95%
Fe	Liberated	11	%	%	%	%	%		
ру	Liberated	28	Phosphate	0.30	6 0.48	8 6.29	0.01		1.09
Fe	Liberated	22	NiMO	1.6	5 1.8	7 0.12	7.74		2.33
Fe	Liberated	21	FeOOH	50.1 ⁻	1 97.43	3 88.37	6.06		9.14
Fe	Liberated	12	FeSiO2	1.03	3 0.22	2 1.01	0.21		1.84
Fe	Liberated	9	Pentlandite	28.49	9 (0 C	79.19		8.25
Fe	Liberated	36	NiSO4	0.13	3 (0.01	0.24		0.67
Fe	Liberated	4	FeS2	9.18	3 (0 1.7	1.32		5.28
Fe	Liberated	40	FeSO4	6.78	3 (0 2.51	2.01		4.59
Fe	Liberated	21	NiO	0.4	4 (0 0	3.08		1.16
pent	Inclusion	2	Chalcopyrite	1.87	7 (0 C	0.14		2.48
pent	Inclusion	2							
pent	Inclusion	4							
pent	Liberated	16							
Fe	Liberated	8							
Fe	Liberated	14							
Fe	Liberated	8							
pent	Liberated	10							
pent	Liberated	10							
Fe	Liberated	60							
Sulf	Liberated	29							

pentInclusionpentInclusionpentInclusionpyLiberated

Fe	Liberated	22
ру	Liberated	7
nio	Liberated	9
Fe	Liberated	7
FeSi	Liberated	14
Fe	Liberated	23
Fe	Liberated	32
ру	Liberated	45
Fe	Liberated	60
pent	Liberated	10
Fe	Rimming	12
Sulf	Liberated	23
pent	Inclusion	10
Fe	Liberated	7
Fe	Liberated	14
Sulf	Liberated	32
ру	Rimming	10
pent	Liberated	9
violarite	Liberated	28
viol	Liberated	9
ру	Liberated	28
ру	Cemented	10
pent	Liberated	55
pent	Liberated	60
ср	Liberated	42
Fe	Liberated	48

Detailed Speciation Results from LEGS (2007) Sample 523s (Outdoor Soil)

Form Association Size

Liberated

Liberated

pent

Fe

80

Phos	Liberated	2	Form	Number	Mean	Std-Dev	Range low I	Range high	
nimo	Liberated	21	total	115	5 19.	5 18.15	1	88	
nimo	Liberated	16	Phosphate		2 4	4 2.83	2	6	
Fe	Liberated	12	NiMO		2 18.	5 3.54	16	21	
FeSi	Liberated	9	FeOOH	4	1 27.4	1 19.08	4	88	
pent	Liberated	6	FeSiO2		2 11.	5 3.54	9	14	
Fe	Rimming	7	Pentlandite	4	5 14.2	2 17.36	2	80	
pent	Liberated	7	NiSO4		1 :	3 ND	3	3	
pent	Liberated	35	FeS2	1:	5 13.73	3 11.47	1	45	
Fe	Liberated	35	FeSO4	Į	5 30.4	4 18.96	8	60	
Fe	Liberated	6	NiO		1 9	9 ND	9	9	
Fe	Cemented	32	Chalcopyrite		1 42	2 ND	42	42	
Phos	Liberated	6							
nisio2	Rimming	3							
ру	Liberated	5	Form	(linear) freq	rm As	rm Pb	rm Ni		error-95%
Fe	Liberated	11	%	%	%	%	%		
ру	Liberated	28	Phosphate	0.30	6 0.48	8 6.29	0.01		1.09
Fe	Liberated	22	NiMO	1.6	5 1.8	7 0.12	7.74		2.33
Fe	Liberated	21	FeOOH	50.1 ⁻	1 97.43	3 88.37	6.06		9.14
Fe	Liberated	12	FeSiO2	1.03	3 0.22	2 1.01	0.21		1.84
Fe	Liberated	9	Pentlandite	28.49	9 (0 C	79.19		8.25
Fe	Liberated	36	NiSO4	0.13	3 (0.01	0.24		0.67
Fe	Liberated	4	FeS2	9.18	3 (0 1.7	1.32		5.28
Fe	Liberated	40	FeSO4	6.78	3 (0 2.51	2.01		4.59
Fe	Liberated	21	NiO	0.4	4 (0 0	3.08		1.16
pent	Inclusion	2	Chalcopyrite	1.87	7 (0 C	0.14		2.48
pent	Inclusion	2							
pent	Inclusion	4							
pent	Liberated	16							
Fe	Liberated	8							
Fe	Liberated	14							
Fe	Liberated	8							
pent	Liberated	10							
pent	Liberated	10							
Fe	Liberated	60							
Sulf	Liberated	29							

pentInclusionpentInclusionpentInclusionpyLiberated

Fe	Liberated	22
ру	Liberated	7
nio	Liberated	9
Fe	Liberated	7
FeSi	Liberated	14
Fe	Liberated	23
Fe	Liberated	32
ру	Liberated	45
Fe	Liberated	60
pent	Liberated	10
Fe	Rimming	12
Sulf	Liberated	23
pent	Inclusion	10
Fe	Liberated	7
Fe	Liberated	14
Sulf	Liberated	32
ру	Rimming	10
pent	Liberated	9
violarite	Liberated	28
viol	Liberated	9
ру	Liberated	28
ру	Cemented	10
pent	Liberated	55
pent	Liberated	60
ср	Liberated	42
Fe	Liberated	48

Detailed Speciation Results from LEGS (2007) Sample 584s (Outdoor Soil)

39

11

20

20

20

20

20

20

25

35

13

12

18 45

10

Form Association Size

Liberated

Liberated

Rimming

Rimming

Rimming

Rimming

Rimming

Rimming

Rimming

Rimming

Liberated

Liberated

Liberated

Liberated Liberated

Fe

ni

Fe

Fe

nio

nio

Fe

Fe

Fe Fe Fe FeSi Fe PbSiO4 PbSiO4 PbSiO4 PbSiO4 PbSiO4

FeSi

FeSi

FeSi

nimo

PbSiO4

PbSiO4

PbSiO4

PbSiO4

PbSiO4

PbSiO4

PbSiO4

FeSi

nio

nio

Fe

ру

FeSi

12 Liberated Form Number Mean Liberated 3 total 103 24.52 37 FeOOH 40 21.8 Liberated 25 Liberated Ni metal 2 4.5 10 FeSiO2 20 Liberated 38.15 Liberated 4 NiO 17 9.18 NiMO 80 Liberated 1 PbSiO4 12 Liberated 5 28.33 32 FeS2 2 10.5 Liberated NiFeO 6 Liberated 11 53.17

Pentlandite

Liberated	2						
Liberated	5	Form	(linear) freq	m As	rm Pb	rm Ni	error-95%
Liberated	5	%	%	%	%	%	
Liberated	2	FeOOH	34.52	87.31	2.47	4.34	9.18
Liberated	10	Ni metal	0.36	0	0	5.93	1.15
Liberated	25	FeSiO2	30.21	8.49	1.21	6.48	8.87
Liberated	42	NiO	6.18	0	0	49.32	4.65
Liberated	9	NiMO	0.08	0.12	0	0.39	0.54
Rimming	40	PbSiO4	13.46	0	96.27	0	6.59
Rimming	40	FeS2	0.83	0	0.01	0.12	1.75
Rimming	40	NiFeO	12.63	4.08	0.04	28.37	6.42
Rimming	40	Pentlandite	1.74	0	0	5.04	2.53

3

Std-Dev

2 ND

14.67

21.25

18.2

2.12

6.7

25.37

9.61

0.71

8.33

28

Range low Range high

90

90

85

29

40

11

80

24

2

6

2

2

3

4 3

2

20

10

2

nio	Liberated	8
Fe	Liberated	5
nio	Liberated	4
Fe	Liberated	15
FeSi	Liberated	50
FeSi	Liberated	14
nio	Liberated	8
nio	Liberated	4
Fe	Liberated	14
nio	Liberated	7
Fe	Liberated	8
Fe	Liberated	7
nio	Liberated	4
Fe	Liberated	50
Fe	Liberated	10
Fe	Liberated	3
FeSi	Liberated	65
Fe	Liberated	40
nio	Liberated	14
Fe	Liberated	38
Fe	Liberated	15
Fe	Liberated	4
nio	Rimming	4
Fe	Liberated	16
nio	Liberated	11
nio	Liberated	3
FeSi	Liberated	85
nifeo	Liberated	80
FeSi	Liberated	25
nifeo	Liberated	62
FeSi	Liberated	28
Fe	Liberated	9
Fe	Liberated	35
Fe	Liberated	13
FeSi	Liberated	4
Fe	Liberated	48
Fe	Liberated	18
nifeo	Liberated	48
FeSi	Liberated	52
nio	Liberated	29
Fe	Liberated	22
FeSi	Liberated	21

ni	Liberated	6
FeSi	Liberated	80
Fe	Liberated	13
Fe	Liberated	25
FeSi	Liberated	55
pent	Inclusion	24
Fe	Rimming	25
ру	Liberated	11
pent	Inclusion	12
Fe	Liberated	45
nifeo	Liberated	75
FeSi	Liberated	8
Fe	Liberated	35
FeSi	Liberated	40
Fe	Liberated	8
nio	Liberated	13
nifeo	Liberated	2
Fe	Liberated	50
nifeo	Rimming	52
Fe	Liberated	90
nio	Liberated	8
pent	Inclusion	8
Fe	Rimming	18
Fe	Liberated	16

Detailed Speciation Results from LEGS (2007) Sample 514 (Indoor Dust)

Fe	Liberated	12	Form	Number	Μ	ean	Std-Dev	Range low	Range high	
PbMO	Liberated	12	total		100	10.11	7.75	2	45	
Fe	Liberated	7	FeOOH		47	11.79	9.34	2	45	
niso4	Liberated	3	PbMO		1	12	ND	12	12	
Fe	Liberated	15	NiSO4		17	8.88	7.26	3	35	
Fe	Liberated	4	NiS		4	7	2.94	3	10	
Fe	Liberated	7	NiP		3	7	3.46	3	9	
Fe	Liberated	4	Cr-Ni metal		9	7.22	4.87	2	15	
nis	Liberated	8	Pentlandite		6	10.67	6.59	3	23	
nip	Liberated	9	NiMO		3	10.33	5.51	5	16	
niso4	Liberated	10	Cerussite		1	6	ND	6	6	
Fe	Liberated	2	Anglesite		1	20	ND	20	20	
Fe	Liberated	13	FeS2		5	6.8	4.09	4	14	
niso4	Liberated	5	Ni Metal		1	5	ND	5	5	
Fe	Liberated	3	NiO		1	8	ND	8	8	
niso4	Liberated	9	FeSO4		1	12	ND	12	12	
niso4	Liberated	4								
nis	Liberated	3								
Fe	Liberated	10	Form	(linear) fre	eq rn	n As	rm Pb	rm Ni		error-95%
nis	Liberated	10	%	%	. %)	%	%		
Fe	Liberated	3	FeOOH		54.8	41.3	11.53	5.2		9.75
Fe	Liberated	12	PbMO		1.19	57.35	7.14	0		2.12
niso4	Liberated	9	NiSO4	1	4.94	0	0.08	21.45		6.99
crni	Liberated	13	NiS		2.77	0	0	13.76		3.22
nip	Liberated	3	NiP		2.08	0	0	10.27		2.8
Fe	Liberated	13	Cr-Ni metal		6.43	0	0	12.56		4.81
niso4	Liberated	8	Pentlandite		6.33	0	0	13.82		4.77
niso4	Liberated	8	NiMO		3.07	1.35	0.03	11.3		3.38
Fe	Liberated	36	Cerussite		0.59	0	21.32	0		1.51
Fe	Liberated	9	Anglesite		1.98	0	59.78	0		2.73
Fe	Liberated	11	FeS2		3.36	0	0.07	0.38		3.53
niso4	Liberated	6	Ni Metal		0.49	0	0	6.21		1.37
niso4	Liberated	8	NiO		0.79	0	0	4.77		1.74
pent	Liberated	10	FeSO4		1.19	0	0.05	0.28		2.12
crni	Liberated	12								
Fe	Liberated	16								
Fe	Liberated	5								
Fe	Liberated	8								
crni	Liberated	3								

Fe	Liberated	13
nip	Liberated	9
pent	Liberated	10
pent	Liberated	3
Fe	Liberated	5
Sulf	Liberated	12
Fe	Liberated	7
Fe	Liberated	32
Fe	Liberated	30
Fe	Liberated	3
ру	Liberated	4
ру	Liberated	5
ру	Inclusion	5
niso4	Liberated	8
Fe	Liberated	4
Fe	Liberated	7
ру	Liberated	6

Detailed Speciation Results from LEGS (2007) Sample 530 (Indoor Dust)

Fe	Liberated	7	Form	Number	Mean	Std-Dev	Range low	Range high	
Fe	Liberated	13	total	114	4 10.6	9.42	1	48	
Fe	Liberated	11	FeOOH	29	9 8.59	5.61	2	25	
Fe	Liberated	13	Pentlandite	1(0 8.5	5 4.74	2	18	
Fe	Liberated	11	Paint		2 10.5	6 4.95	7	14	
pent	Liberated	9	NiO	e	6 7.5	5 7.53	2	22	
Fe	Liberated	4	FeS2	12	2 16.58	8 14.72	3	40	
Fe	Rimming	3	NiS	e	6 11.67	6.35	6	24	
Fe	Liberated	6	FeSiO2	19	9 15.26	6 10.66	3	45	
Fe	Liberated	5	Cerussite	14	4 5.07	′ 4.45	1	14	
Paint	Liberated	14	PbCrO4	4	4 14.5	5 11.93	6	32	
nio	Liberated	8	NiSO4		1 9) ND	9	9	
Fe	Liberated	4	PbMO	4	4 20.5	5 18.48	8	48	
py	Liberated	32	NiP		2 8	3 1.41	7	9	
pent	Liberated	2	PbTiO2	(3 1.33	0.58	1	2	
, nis	Liberated	24	Ni Metal		1 5	5 ND	5	5	
py	Liberated	35	PbMSO4		1 4	ND	4	4	
FeSi	Liberated	4							
F 0'	1.1	~							
FeSi	Liberated	5							
FeSi pv	Liberated	5 3	form	(linear) freg	rm As	rm Pb	rm Ni		error-95%
FeSi py FeSi	Liberated Liberated Liberated	5 3 7	form %	(linear) freq %	rm As %	rm Pb %	rm Ni %		error-95%
FeSi py FeSi FeSi	Liberated Liberated Liberated Liberated	5 3 7 15	form % FeOOH	(linear) freq % 20.6 ²	rm As % 1 4.47	rm Pb % 1.15	rm Ni % 2.25		error-95% 7.43
FeSi py FeSi FeSi Cer	Liberated Liberated Liberated Liberated Liberated	5 3 7 15 13	form % FeOOH Pentlandite	(linear) freq % 20.6 ⁻ 7.04	rm As % 1 4.47 4 0	rm Pb % 7 1.15 0 0	rm Ni % 2.25 17.63		error-95% 7.43 4.7
FeSi py FeSi FeSi Cer Fe	Liberated Liberated Liberated Liberated Liberated Liberated	5 3 7 15 13 13	form % FeOOH Pentlandite Paint	(linear) freq % 20.6 ⁴ 7.04 1.74	rm As % 1 4.47 4 0 4 0	rm Pb % 7 1.15 0 0 0.88	rm Ni % 2.25 17.63 0		error-95% 7.43 4.7 2.4
FeSi py FeSi FeSi Cer Fe FeSi	Liberated Liberated Liberated Liberated Liberated Liberated Liberated	5 3 7 15 13 13 6	form % FeOOH Pentlandite Paint NiO	(linear) freq % 20.6 ⁻¹ 7.04 1.74 3.75	rm As % 1 4.47 4 0 4 0 3 0	rm Pb % 1.15) 0) 0.88) 0	rm Ni % 2.25 17.63 0 25.77		error-95% 7.43 4.7 2.4 3.48
FeSi py FeSi FeSi Cer Fe FeSi nis	Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated	5 3 7 15 13 13 6 10	form % FeOOH Pentlandite Paint NiO FeS2	(linear) freq % 20.6 ⁷ 7.0 ⁴ 1.74 3.73 16.47	rm As % 1 4.47 4 0 4 0 3 0 7 0	rm Pb % 1.15 0 0.88 0 0.1	rm Ni % 2.25 17.63 0 25.77 2.14		error-95% 7.43 4.7 2.4 3.48 6.81
FeSi py FeSi FeSi Cer Fe FeSi nis nis	Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated	5 3 7 15 13 13 6 10 9	form % FeOOH Pentlandite Paint NiO FeS2 NiS	(linear) freq % 20.6 7.04 1.74 3.73 16.43 5.75	rm As % 1 4.47 4 0 4 0 3 0 7 0 9 0	rm Pb % 1.15) 0 0.88) 0.88) 0.1	rm Ni % 2.25 17.63 0 25.77 2.14 33.04		error-95% 7.43 4.7 2.4 3.48 6.81 4.29
FeSi py FeSi FeSi Cer Fe FeSi nis nis Fe	Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated	5 3 7 15 13 13 6 10 9 8	form % FeOOH Pentlandite Paint NiO FeS2 NiS FeSiO2	(linear) freq % 20.6 7.04 1.74 3.7(3.7(16.4) 5.7(24.0	rm As % 1 4.47 4 0 4 0 3 0 7 0 9 0 1 0.58	rm Pb % 1.15) 0 0.88) 0.88) 0.88) 0.88 0 0.88 0 0.75	rm Ni % 2.25 17.63 0 25.77 2.14 33.04 4.46		error-95% 7.43 4.7 2.4 3.48 6.81 4.29 7.84
FeSi Py FeSi Cer Fe FeSi nis nis Fe Paint	Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated	5 3 7 15 13 13 6 10 9 8 7	form % FeOOH Pentlandite Paint NiO FeS2 NiS FeSiO2 Cerussite	(linear) freq % 20.67 7.04 1.74 3.73 16.47 5.79 24.07 5.88	rm As % 1 4.47 4 0 4 0 3 0 7 0 9 0 1 0.58 3 0	rm Pb % 1.15 0 0.88 0 0.1 0 0.1 0 0.75 0 56.14	rm Ni % 2.25 17.63 0 25.77 2.14 33.04 4.46 0		error-95% 7.43 4.7 2.4 3.48 6.81 4.29 7.84 4.32
FeSi py FeSi Cer Fe FeSi nis Fe Paint FeSi	Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated	5 3 7 15 13 13 6 10 9 8 7 16	form % FeOOH Pentlandite Paint NiO FeS2 NiS FeSiO2 Cerussite PbCrO4	(linear) freq % 20.6 7.04 1.74 3.75 16.47 5.75 24.0 5.88 4.8	rm As % 1 4.47 4 0 4 0 3 0 7 0 9 0 1 0.58 3 0 3 0	rm Pb % 1.15 0 0.88 0 0.1 0 0.1 0 0.1 0 0.75 0 56.14 0 26.86	rm Ni % 2.25 17.63 0 25.77 2.14 33.04 4.46 0 0		error-95% 7.43 4.7 2.4 3.48 6.81 4.29 7.84 4.32 3.92
PeSi py FeSi Cer Fe FeSi nis Fe Paint FeSi FeSi FeSi	Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated	5 3 7 15 13 13 6 10 9 8 7 16 45	form % FeOOH Pentlandite Paint NiO FeS2 NiS FeSiO2 Cerussite PbCrO4 NiSO4	(linear) freq % 20.6 7.04 1.74 3.75 16.47 5.75 24.07 5.88 4.8	rm As % 1 4.47 4 0 3 0 7 0 9 0 1 0.58 8 0 3 0 5 0	rm Pb % 7 1.15 0 0.88 0 0.88 0 0.88 0 0.88 0 0.1 0 0.0 0 0.1 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.0	rm Ni % 2.25 17.63 0 25.77 2.14 33.04 4.46 0 0 1.23		error-95% 7.43 4.7 2.4 3.48 6.81 4.29 7.84 4.32 3.92 1.58
FeSi py FeSi Cer Fe FeSi nis nis Fe Paint FeSi FeSi nio	Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated	5 3 7 15 13 13 6 10 9 8 7 16 45 7	form % FeOOH Pentlandite Paint NiO FeS2 NiS FeSiO2 Cerussite PbCrO4 NiSO4 PbMO	(linear) freq % 20.6 7.0 1.7 3.7 16.4 5.7 24.0 5.8 4.8 0.7 5.7 5.8 24.0	rm As % 1 4.47 4 0 3 0 7 0 9 0 1 0.58 3 0 3 0 5 0 9 94.31	rm Pb % 7 1.15 0 0 0 0.88 0 0 0 0.1 0 0.1 0 0.75 0 56.14 0 26.86 0 0 10.86	rm Ni % 2.25 17.63 0 25.77 2.14 33.04 4.46 0 0 1.23 0		error-95% 7.43 4.7 2.4 3.48 6.81 4.29 7.84 4.32 3.92 1.58 4.62
FeSi py FeSi Cer FeSi nis nis Fe Paint FeSi FeSi nio Fe	Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated	5 3 7 15 13 13 6 10 9 8 7 16 45 7 18	form % FeOOH Pentlandite Paint NiO FeS2 NiS FeSiO2 Cerussite PbCrO4 NiSO4 PbMO NiP	(linear) freq % 20.67 7.04 1.74 3.73 16.47 5.79 24.07 5.88 4.8 0.75 6.75 1.32	rm As % 1 4.47 4 0 3 0 7 0 9 0 1 0.58 3 0 5 0 9 94.31 2 0	rm Pb % 7 1.15 0 0 0 0.88 0 0.88 0 0.88 0 0.10 3 0.75 0 56.14 0 26.86 0 0 10.86 0 0	rm Ni % 2.25 17.63 0 25.77 2.14 33.04 4.46 0 0 1.23 0 7.52		error-95% 7.43 4.7 2.4 3.48 6.81 4.29 7.84 4.32 3.92 1.58 4.62 2.1
PeSi py FeSi Cer FeSi nis nis Fe Paint FeSi FeSi nio Fe pent	Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated	5 3 7 15 13 13 6 10 9 8 7 16 45 7 16 45 7 18 9	form % FeOOH Pentlandite Paint NiO FeS2 NiS FeSiO2 Cerussite PbCrO4 NiSO4 PbMO NiP PbTiO2	(linear) freq % 20.6 7.04 1.74 3.75 16.47 5.75 24.0 5.88 4.8 0.75 6.75 1.32 0.35	rm As % 1 4.47 4 0 3 0 7 0 9 0 1 0.58 3 0 5 0 9 94.31 2 0 3 0	rm Pb % 1.15 0 0.88 0 0.88 0 0.10 0 0.1 0 0.1 0 0.75 0 56.14 0 26.86 0 0 10.86 0 0 1.85	rm Ni % 2.25 17.63 0 25.77 2.14 33.04 4.46 0 0 1.23 0 7.52 0		error-95% 7.43 4.7 2.4 3.48 6.81 4.29 7.84 4.32 3.92 1.58 4.62 2.1 1.05
PeSi py FeSi Cer FeSi nis nis Fe Paint FeSi FeSi nio Fe pent py	Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated	5 3 7 15 13 13 6 10 9 8 7 16 45 7 16 45 7 18 9 40	form % FeOOH Pentlandite Paint NiO FeS2 NiS FeSiO2 Cerussite PbCrO4 NiSO4 PbMO NiP PbTiO2 Ni Metal	(linear) freq % 20.6 7.0 1.7 3.7 16.4 5.7 24.0 5.8 4.8 0.7 6.7 1.3 0.3 0.3 0.4	rm As % 1 4.47 4 0 3 0 7 0 9 0 1 0.58 3 0 5 0 9 94.31 2 0 3 0 1 0	rm Pb % 7 1.15 0 0.88 0 0.88 0 0.1 0 0.1 0 0.1 0 0.1 0 0.75 0 56.14 0 26.86 0 0 10.86 0 0 11.85 0 0	rm Ni % 2.25 17.63 0 25.77 2.14 33.04 4.46 0 0 1.23 0 7.52 0 5.97		error-95% 7.43 4.7 2.4 3.48 6.81 4.29 7.84 4.32 3.92 1.58 4.62 2.1 1.05 1.18
PeSi py FeSi Cer Fe FeSi nis nis Fe Paint FeSi FeSi nio Fe pent py pbcro4	Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated	5 3 7 15 13 13 6 10 9 8 7 16 45 7 16 45 7 18 9 40 32	form % FeOOH Pentlandite Paint NiO FeS2 NiS FeSiO2 Cerussite PbCrO4 NiSO4 PbMO NiP PbTiO2 Ni Metal PbMSO4	(linear) freq % 20.6 7.0 1.7 3.7 16.4 5.7 24.0 5.8 4.8 0.7 6.7 6.7 1.3 0.3 0.3 0.4 0.3	rm As % 1 4.47 4 0 3 0 7 0 9 0 1 0.58 3 0 5 0 9 94.31 2 0 3 0 1 0 3 0 1 0	rm Pb % 7 1.15 0 0.88 0 0.88 0 0.10 0 0.1 0 0.1 0 0.1 0 0.75 0 56.14 0 26.86 0 0 10.86 0 0 1.85 0 0 1.4	rm Ni % 2.25 17.63 0 25.77 2.14 33.04 4.46 0 1.23 0 7.52 0 5.97 0		error-95% 7.43 4.7 2.4 3.48 6.81 4.29 7.84 4.32 3.92 1.58 4.62 2.1 1.05 1.18 1.05
PeSi py FeSi Cer Fe FeSi nis nis Fe Paint FeSi FeSi nio Fe pent py pbcro4 FeSi	Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated	5 3 7 15 13 13 6 10 9 8 7 16 45 7 16 45 7 18 9 40 32 8	form % FeOOH Pentlandite Paint NiO FeS2 NiS FeSiO2 Cerussite PbCrO4 NiSO4 PbMO NiP PbTiO2 Ni Metal PbMSO4	(linear) freq % 20.6 7.0 1.7 3.7 16.4 5.7 24.0 5.8 4.8 0.7 6.7 1.3 0.3 0.3	rm As % 1 4.47 4 0 3 0 7 0 9 0 1 0.58 3 0 5 0 9 94.31 2 0 3 0 1 0 3 0.65	rm Pb % 7 1.15 0 0 0 0 0 0 0 0 0 0 10.86 0 0 10.86 0 0 10.86 0 0 1.85 0 0 1.4	rm Ni % 2.25 17.63 0 25.77 2.14 33.04 4.46 0 0 1.23 0 7.52 0 5.97 0		error-95% 7.43 4.7 2.4 3.48 6.81 4.29 7.84 4.32 3.92 1.58 4.62 2.1 1.05 1.18 1.05

pent	Inclusion	18
Fe	Rimming	25
Fe	Cemented	4
FeSi	Liberated	16
nio	Liberated	2
pbtio2	Rimming	2
pbtio2	Liberated	1
pbtio2	Liberated	1
Cer	Liberated	9
nio	Liberated	2
Fe	Liberated	4
Fe	Liberated	16
pent	Liberated	6
nis	Liberated	6
PbMO	Liberated	13
PbMO	Liberated	13
pent	Liberated	5
ру	Liberated	5
Cer	Liberated	4
ру	Liberated	4
Fe	Liberated	12
ni	Liberated	5
FeSi	Liberated	16
Fe	Rimming	10
FeSi	Liberated	30
pent	Liberated	8
nip	Liberated	7
Cer	Liberated	14
Cer	Liberated	3
PbMO	Liberated	48
pent	Liberated	15
pbmso4	Liberated	4

Detailed Speciation Results from LEGS (2007) Sample 547 (Indoor Dust)

ру	Liberated	3	Form	Number	Mean	Std-Dev	Range low	/ Range high	
pent	Liberated	7	total	58	9.52	8.15	1	45	
nio	Liberated	3	FeS2	10) 7.2	3.77	3	15	
PbMO	Liberated	13	Pentlandite	3	3 11	4.58	7	16	
Phos	Liberated	8	NiO	5	5 7	5.15	2	15	
Phos	Liberated	25	PbMO	6	5 7.17	5.08	2	13	
Fe	Liberated	7	Phosphate	4	9.75	10.47	2	25	
PbMO	Liberated	2	FeOOH	16	5 11.56	7.77	3	35	
nio	Liberated	8	NiFeO	1	8	ND	8	8	
PbMO	Cemented	2	CuMO	1	45	ND	45	45	
Fe	Liberated	11	NiS	2	2 11.5	0.71	11	12	
Fe	Liberated	8	PbSiO4	1	12	ND	12	12	
nifeo	Liberated	8	FeSO4	1	11	ND	11	11	
ру	Liberated	7	FeSiO2	1	5	ND	5	5	
Fe	Liberated	3	NiMO	2	2 17.5	13.44	8	27	
pent	Liberated	10	Ni metal	5	5 1.2	0.45	1	2	
cumo	Liberated	45							
Fe	Liberated	21							
Fe	Liberated	7	form	(linear) freq	rm As	rm Pb	rm Ni		error-95%
Fe	Liberated	11	%	%	%	%	%		
ру	Liberated	7	FeS2	13.04	ь O	0.25	1.18		8.67
Fe	Liberated	8	Pentlandite	5.98	3 0	0	10.41		6.1
Fe	Liberated	10	NiO	6.34	ь O	0	30.48		6.27
nis	Liberated	12	PbMO	7.79	92.17	40.73	0		6.9
ру	Liberated	6	Phosphate	7.07	0.91	12.92	0.12		6.59
PbMO	Liberated	12	FeOOH	33.51	6.19	6.13	2.54		12.15
nis	Liberated	11	NiFeO	1.45	0.03	0.01	1.96		3.08
ру	Liberated	12	CuMO	8.15	5 0	0	6.81		7.04
ру	Liberated	5	NiS	4.17	· 0	0	16.51		5.14
PbMO	Liberated	10	PbSiO4	2.17	· 0	39.75	0		3.75
Fe	Liberated	4	FeSO4	1.99) 0	0.08	0.37		3.6
nio	Liberated	15	FeSiO2	0.91	0.02	0.09	0.12		2.44
ру	Liberated	8	NiMO	6.34	0.68	0.05	18.63		6.27
Fe	Liberated	8	Ni metal	1.09) 0	0	10.89	1	2.67
PbSiO4	Liberated	12							
Sulf	Liberated	11							

Detailed Speciation Results from LEGS (2007) Sample 561 (Indoor Dust)

Form Association Size

sociation Size

pent	Liberated	34	Form	Number	Mear	า	Std-Dev	Range low	Range high	
Fe	Liberated	58	total	11	0 2	22.37	25.25	1	150	
ру	Cemented	7	Pentlandite	1	1	14.27	13.76	5	48	
Phos	Rimming	14	FeOOH	2	8 2	27.56	28.84	3	150	
Fe	Liberated	15	FeS2		8	9.38	10.17	2	31	
Fe	Liberated	7	Phosphate		2	11	4.24	8	14	
nifeo	Liberated	21	NiFeO		5	20	16.93	3	48	
PbMO	Inclusion	2	PbMO		6	1.83	1.17	1	4	
PbMO	Inclusion	4	FeSO4		4 2	28.25	24.88	2	50	
Fe	Liberated	7	NiO		6	11	12.38	3	35	
Fe	Liberated	6	NiS	1	5 3	31.33	28.74	10	105	
Fe	Liberated	80	FeSiO2		1	80	ND	80	80	
Fe	Liberated	45	Plumbobarite		1	10	ND	10	10	
Fe	Liberated	38	Cerussite		3	11.33	12.1	2	25	
Fe	Liberated	4								
Fe	Liberated	28								
Fe	Liberated	29	Form	(linear) frec	rm A	s	rm Pb	rm Ni		error-95%
Fe	Liberated	23	%	%	%		%	%		
Fe	Liberated	42	Pentlandite	6.3	88	0	0	10.03		4.57
Fe	Liberated	33	FeOOH	53.7	6 (64.07	16.94	3.67		9.32
Fe	Cemented	38	FeS2	3.0)5	0	0.1	0.25		3.21
Sulf	Liberated	12	Phosphate	3.0	9	0.74	2.82	0.01		1.76
Fe	Liberated	9	NiFeO	4.0)6	0.62	0.06	4.96		3.69
Fe	Liberated	14	PbMO	0.4	5 3	34.14	4.03	0		1.25
Fe	Liberated	11	FeSO4	4.5	59	0	0.3	0.77		3.91
Fe	Liberated	85	NiO	2.6	8	0	0	11.64		3.02
Sulf	Inclusion	2	NiS	19	.1	0	0	68.3		7.35
Fe	Liberated	9	FeSiO2	3.2	25	0.43	0.57	0.38		3.31
Fe	Liberated	5	Plumbobarite	0.4	1	0	0.86	0		1.19
Fe	Liberated	8	Cerussite	1.3	88	0	74.32	0		2.18
Fe	Liberated	3								
Fe	Liberated	60								
Fe	Liberated	7								
Fe	Liberated	47								
Fe	Liberated	9								

Fe Liberated

Fe Liberated

4

Liberated

Liberated

Liberated

Liberated

Liberated

Liberated

Liberated Liberated

Liberated

Inclusion

Liberated

Liberated

nis

nis

nis Fe

Fe

Fe

nio

Fe

ру

Fe

nifeo

Phos

10

10

10

48

50

8

8

60

17

29

14

bar	Liberated	10
Fe	Liberated	26
pent	Inclusion	10
pent	Cemented	48
pent	Inclusion	5
pent	Inclusion	5
pent	Inclusion	5
Fe	Rimming	75
nio	Liberated	3
nio	Liberated	35
nio	Liberated	13
ру	Liberated	31
Fe	Liberated	9
nifeo	Liberated	48
nifeo	Liberated	14
ру	Liberated	10
ру	Liberated	4
ру	Liberated	2
ру	Liberated	2
ру	Liberated	2
Cer	Liberated	25
Cer	Liberated	7
Cer	Liberated	2
Fe	Liberated	45
Sulf	Liberated	50

Detailed Speciation Results from LEGS (2007) Sample 564 (Indoor Dust)

cumo	Cemented	3	Form	Number		Mean	Std-Dev	Range low	Range high	
cumo	Cemented	1	total		34	6.56	3.92	1	16	
Fe	Liberated	2	CuMO		3	5.33	5.86	1	12	
Fe	Liberated	8	FeOOH		9	7.67	5.32	2	16	
Cer	Liberated	8	Cerussite		1	8	ND	8	8	
cumo	Liberated	12	FeS2		4	6.25	3.4	3	11	
ру	Liberated	6	Pentlandite		7	7.14	2.48	3	10	
pent	Liberated	7	FeSiO2		2	8.5	0.71	8	9	
FeSi	Liberated	8	FeSO4		2	7.5	6.36	3	12	
pent	Inclusion	7	NiMO		2	3	1.41	2	4	
Sulf	Rimming	12	NiS		1	8	ND	8	8	
pent	Rimming	5	PbMO		2	2.5	0.71	2	3	
ру	Liberated	5	NiO		1	4	ND	4	4	
nimo	Liberated	4								
nis	Liberated	8								
PbMO	Liberated	3	form	(linear) fre	p	rm As	rm Pb	rm Ni		error-95%
PbMO	Liberated	2	%	%		%	%	%		
Fe	Liberated	12	CuMO		7.17	0	0	7.36		8.67
Fe	Liberated	3	FeOOH	3	0.94	17.47	4.33	2.88		15.54
Fe	Liberated	3	Cerussite		3.59	0	85.72	0		6.25
Fe	Liberated	3	FeS2	1	1.21	0	0.16	1.24		10.61
pent	Liberated	9	Pentlandite	2	2.42	0	0	47.99		14.02
FeSi	Liberated	9	FeSiO2		7.62	0.48	0.6	1.21		8.92
nimo	Liberated	2	FeSO4		6.73	0	0.2	1.53		8.42
Sulf	Liberated	3	NiMO	:	2.69	0.89	0.02	9.72		5.44
Fe	Liberated	8	NiS		3.59	0	0	17.47		6.25
pent	Liberated	9	PbMO		2.24	81.16	8.98	0		4.98
ру	Liberated	11	NiO		1.79	0	0	10.6		4.46
Fe	Liberated	14								
pent	Liberated	3								
nio	Liberated	4								
ру	Liberated	3								
pent	Liberated	10								
Fe	Liberated	16								

Detailed Speciation Results from LEGS (2007) Sample 574 (Indoor Dust)

Association Size Form

ру	Liberated	6	Form	Number	Ν	Mean	Std-I	Dev	Range low	Range I	high	
Fe	Liberated	4	total		42	9.79		7.92	- 1		35	
Sulf	Liberated	3	FeS2		10	9.6		3.6	6		17	
pent	Liberated	6	FeOOH		5	7.2		2.59	4		10	
ру	Liberated	8	FeSO4		1	3	ND		3		3	
ру	Liberated	9	Pentlandite		5	11.8		7.5	6		23	
nimo	Liberated	5	NiMO		1	5	ND		5		5	
ру	Liberated	7	CuMO		2	5.5		4.95	2		9	
cumo	Liberated	9	Slag		1	33	ND		33		33	
Slag	Liberated	33	PbO		1	7	ND		7		7	
PbO	Inclusion	7	Cerussite		1	26	ND		26		26	
Cer	Liberated	26	Plumbobarite		2	2		1.41	1		3	
ру	Liberated	14	NiO		3	10.67		3.21	7		13	
Fe	Liberated	9	NiFeO		2	22		18.38	9		35	
bar	Liberated	1	Ni metal		2	2		0	2		2	
bar	Liberated	3	FeCr metal		1	5	ND		5		5	
cumo	Liberated	2	FeSiO2		1	9	ND		9		9	
nio	Liberated	13	NiS		3	4.67		3.79	2		9	
nifeo	Liberated	35	NiMCISO4		1	23	ND		23		23	
ру	Liberated	17										
ру	Liberated	7	Form	(linear) fr	eq r	m As	rm P	b	rm Ni			error-95%
nifeo	Liberated	9	%	%	0	%	%		%			
ni	Liberated	2	FeS2	2	3.36	0		0.15	1.86			12.8
ру	Liberated	12	FeOOH		8.76	71.62		0.55	0.59			8.55
stainless	Liberated	5	FeSO4		0.73	0		0.01	0.12			2.57
FeSi	Liberated	9	Pentlandite	1	4.36	0		0	22.08			10.6
nio	Liberated	12	NiMO		1.22	5.8		0	3.16			3.32
ni	Liberated	2	CuMO		2.68	0		0	1.97			4.88
nis	Liberated	9	Slag		8.03	0		0.01	0.72			8.22
nis	Liberated	3	PbO		1.7	0		31.31	0			3.91
Fe	Liberated	5	Cerussite		6.33	0		67.4	0			7.36
ру	Liberated	7	Plumbobarite		0.97	0		0.41	0			2.97
Fe	Liberated	10	NiO		7.79	0		0	33.06			8.1
pent	Liberated	23	NiFeO	1	0.71	11.18		0.03	12.79			9.35
nis	Liberated	2	Ni metal		0.97	0		0	8.61			2.97
nio	Liberated	7	FeCr metal		1.22	0		0.01	0.34			3.32
nimclso4	Liberated	23	FeSiO2		2.19	1.99		0.08	0.25			4.43
pent	Liberated	6	NiS		3.41	0		0	11.92			5.49
pent	Liberated	8	NiMCISO4		5.6	9.41		0.04	2.53			6.95

Fe	Liberated	8
ру	Liberated	9
pent	Liberated	16

Detailed Speciation Results from LEGS (2007) Sample 616 (Indoor Dust)

ру	Liberated	13	Form	Number	Mean	Std-Dev	Range low	Range high	
Fe	Liberated	2	total	107	6.89	4.9	1	35	
pent	Liberated	9	FeS2	17	7.59	3.76	2	16	
nifeo	Liberated	5	FeOOH	16	8.56	5.24	2	23	
PbMO	Liberated	10	Pentlandite	16	6.56	3.74	1	16	
nio	Liberated	6	NiFeO	3	9.67	6.43	5	17	
ру	Liberated	4	PbMO	2	7	4.24	4	10	
Sulf	Liberated	5	NiO	11	6.09	2.91	2	10	
pent	Liberated	6	FeSO4	1	5	ND	5	5	
cumo	Liberated	4	CuMO	4	4.5	2.38	3	8	
FeSi	Liberated	13	FeSiO2	5	10.2	4.6	3	15	
Fe	Liberated	8	NiS	15	8.6	8.03	1	35	
nio	Liberated	9	FeCr metal	6	3	1.55	2	6	
ру	Liberated	7	Cerussite	4	2.25	1.5	1	4	
nis	Liberated	8	NiMS	1	8	ND	8	8	
nio	Liberated	8	Ni metal	4	2.5	1	2	4	
Fe	Liberated	11	NiMO	1	4	ND	4	4	
Fe	Liberated	13	Phosphate	1	4	ND	4	4	
nis	Liberated	8	-						
Fe	Liberated	6	Form	(linear) freq	rm As	rm Pb	rm Ni		error-95%
nis	Liberated	6	%	%	%	%	%		
ру	Liberated	8	FeS2	17.5	0	0.63	0.93		7.2
fecr	Liberated				40.04	6.26			7 . 7
^	Liberated	3	FeOOH	18.59	13.01	0.30	0.83		7.37
Cer	Liberated	3 1	FeOOH Pentlandite	18.59 14.25	13.01	0.30	0.83 14.58		7.37 6.62
Cer py	Liberated Liberated	3 1 9	FeOOH Pentlandite NiFeO	18.59 14.25 3.93	13.01 0 0.35	0.30 0 0.06	0.83 14.58 3.13		7.37 6.62 3.68
Cer py Fe	Liberated Liberated Liberated	3 1 9 3	FeOOH Pentlandite NiFeO PbMO	18.59 14.25 3.93 1.9	13.01 0 0.35 85.19	0.30 0 0.06 18.58	0.83 14.58 3.13 0		7.37 6.62 3.68 2.59
Cer py Fe py	Liberated Liberated Liberated Liberated Liberated	3 1 9 3 5	FeOOH Pentlandite NiFeO PbMO NiO	18.59 14.25 3.93 1.9 9.09	13.01 0 0.35 85.19 0	0.30 0.06 18.58 0	0.83 14.58 3.13 0 25.68		7.37 6.62 3.68 2.59 5.45
Cer py Fe py py	Liberated Liberated Liberated Liberated Cemented	3 1 9 3 5 4	FeOOH Pentlandite NiFeO PbMO NiO FeSO4	18.59 14.25 3.93 1.9 9.09 0.68	13.01 0 0.35 85.19 0 0	0.36 0 0.06 18.58 0 0.05	0.83 14.58 3.13 0 25.68 0.07		7.37 6.62 3.68 2.59 5.45 1.56
Cer py Fe py py fecr	Liberated Liberated Liberated Liberated Cemented Liberated	3 1 9 3 5 4 2	FeOOH Pentlandite NiFeO PbMO NiO FeSO4 CuMO	18.59 14.25 3.93 1.9 9.09 0.68 2.44	13.01 0.35 85.19 0 0	0.30 0.06 18.58 0 0.05 0	0.83 14.58 3.13 0 25.68 0.07 1.2		7.37 6.62 3.68 2.59 5.45 1.56 2.92
Cer py Fe py py fecr py	Liberated Liberated Liberated Liberated Cemented Liberated Liberated	3 1 9 3 5 4 2 5	FeOOH Pentlandite NiFeO PbMO NiO FeSO4 CuMO FeSiO2	18.59 14.25 3.93 1.9 9.09 0.68 2.44 6.92	13.01 0 0.35 85.19 0 0 0 0.54	0.30 0.06 18.58 0 0.05 0.133	0.83 14.58 3.13 0 25.68 0.07 1.2 0.53		7.37 6.62 3.68 2.59 5.45 1.56 2.92 4.81
Cer py Fe py py fecr py nio	Liberated Liberated Liberated Liberated Cemented Liberated Liberated Liberated	3 1 9 3 5 4 2 5 2	FeOOH Pentlandite NiFeO PbMO NiO FeSO4 CuMO FeSiO2 NiS	18.59 14.25 3.93 1.9 9.09 0.68 2.44 6.92 17.5	13.01 0.35 85.19 0 0 0 0.54 0	0.30 0.06 18.58 0 0.05 0 1.33 0	0.83 14.58 3.13 0 25.68 0.07 1.2 0.53 40.75		7.37 6.62 3.68 2.59 5.45 1.56 2.92 4.81 7.2
Cer py Fe py py fecr py nio pent	Liberated Liberated Liberated Liberated Cemented Liberated Liberated Liberated Liberated	3 1 9 3 5 4 2 5 2 3	FeOOH Pentlandite NiFeO PbMO NiO FeSO4 CuMO FeSiO2 NiS FeCr metal	18.59 14.25 3.93 1.9 9.09 0.68 2.44 6.92 17.5 2.44	13.01 0.35 85.19 0 0 0 0.54 0 0	0.30 0.06 18.58 0 0.05 0 1.33 0 0.06	0.83 14.58 3.13 0 25.68 0.07 1.2 0.53 40.75 0.46		7.37 6.62 3.68 2.59 5.45 1.56 2.92 4.81 7.2 2.92
Cer py Fe py py fecr py nio pent nis	Liberated Liberated Liberated Liberated Cemented Liberated Liberated Liberated Liberated Liberated	3 1 9 3 5 4 2 5 2 3 12	FeOOH Pentlandite NiFeO PbMO NiO FeSO4 CuMO FeSiO2 NiS FeCr metal Cerussite	18.59 14.25 3.93 1.9 9.09 0.68 2.44 6.92 17.5 2.44 1.22	13.01 0 0.35 85.19 0 0 0 0 0.54 0 0 0 0	0.30 0.06 18.58 0 0.05 0 1.33 0 0.06 71.3	0.83 14.58 3.13 0 25.68 0.07 1.2 0.53 40.75 0.46 0		7.37 6.62 3.68 2.59 5.45 1.56 2.92 4.81 7.2 2.92 2.08
Cer py Fe py fecr py nio pent nis nims	Liberated Liberated Liberated Liberated Cemented Liberated Liberated Liberated Liberated Liberated Liberated	3 1 9 3 5 4 2 5 2 3 12 8	FeOOH Pentlandite NiFeO PbMO NiO FeSO4 CuMO FeSiO2 NiS FeCr metal Cerussite NiMS	18.59 14.25 3.93 1.9 9.09 0.68 2.44 6.92 17.5 2.44 1.22 1.09	13.01 0 0.35 85.19 0 0 0 0 0.54 0 0 0 0 0 0	0.30 0.06 18.58 0 0.05 0 1.33 0 0.06 71.3 1.63	0.83 14.58 3.13 0 25.68 0.07 1.2 0.53 40.75 0.46 0 2.93		7.37 6.62 3.68 2.59 5.45 1.56 2.92 4.81 7.2 2.92 2.08 1.96
Cer py Fe py py fecr py nio pent nis nims pent	Liberated Liberated Liberated Liberated Cemented Liberated Liberated Liberated Liberated Liberated Liberated Liberated	3 1 9 3 5 4 2 5 2 3 12 8 5	FeOOH Pentlandite NiFeO PbMO NiO FeSO4 CuMO FeSiO2 NiS FeCr metal Cerussite NiMS Ni metal	18.59 14.25 3.93 1.9 9.09 0.68 2.44 6.92 17.5 2.44 1.22 1.09 1.36	13.01 0 0.35 85.19 0 0 0 0.54 0 0 0 0.54 0 0 0 0.7 0	0.30 0.06 18.58 0 0.05 0.05 1.33 0 0.06 71.3 1.63 0	0.83 14.58 3.13 0 25.68 0.07 1.2 0.53 40.75 0.46 0 2.93 7.99		7.37 6.62 3.68 2.59 5.45 1.56 2.92 4.81 7.2 2.92 2.08 1.96 2.19
Cer py Fe py py fecr py nio pent nis nims pent nis	Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated	3 1 9 3 5 4 2 5 2 3 12 8 5 2	FeOOH Pentlandite NiFeO PbMO NiO FeSO4 CuMO FeSiO2 NiS FeCr metal Cerussite NiMS Ni metal NiMO	18.59 14.25 3.93 1.9 9.09 0.68 2.44 6.92 17.5 2.44 1.22 1.09 1.36 0.54	13.01 0 0.35 85.19 0 0 0 0.54 0 0 0 0 0.7 0 0.22	0.30 0.06 18.58 0 0.05 0.05 1.33 0 0.06 71.3 1.63 0 0.01	0.83 14.58 3.13 0 25.68 0.07 1.2 0.53 40.75 0.46 0 2.93 7.99 0.94		7.37 6.62 3.68 2.59 5.45 1.56 2.92 4.81 7.2 2.92 2.08 1.96 2.19 1.39
Cer py Fe py py fecr py nio pent nis nims pent nis Fe	Liberated Liberated Liberated Liberated Cemented Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated Liberated	3 1 9 3 5 4 2 5 2 3 12 8 5 2 7	FeOOH Pentlandite NiFeO PbMO NiO FeSO4 CuMO FeSiO2 NiS FeCr metal Cerussite NiMS Ni metal NiMO Phosphate	18.59 14.25 3.93 1.9 9.09 0.68 2.44 6.92 17.5 2.44 1.22 1.09 1.36 0.54 0.54	13.01 0 0.35 85.19 0 0 0 0 0.54 0 0 0 0.54 0 0 0.7 0 0.22 0	0.30 0.06 18.58 0 0.05 0.05 1.33 0 0.06 71.3 1.63 0 0.01	0.83 14.58 3.13 0 25.68 0.07 1.2 0.53 40.75 0.46 0 2.93 7.99 0.94 0		7.37 6.62 3.68 2.59 5.45 1.56 2.92 4.81 7.2 2.92 2.08 1.96 2.19 1.39 1.39

nio	Liberated	10
Fe	Liberated	2
pent	Liberated	1
cumo	Liberated	8
nis	Liberated	11
pent	Liberated	6
FeSi	Cemented	3
pent	Liberated	6
pent	Liberated	5
ni	Liberated	4
ni	Liberated	2
ру	Liberated	16
pent	Liberated	4
nifeo	Liberated	17
nio	Liberated	6
Cer	Liberated	1
Cer	Liberated	3
ру	Liberated	2
ру	Liberated	2
nis	Liberated	7
pent	Liberated	10
cumso4	Liberated	3
fecr	Liberated	2
cumo	Liberated	3
fecr	Liberated	2
fecr	Liberated	6
FeSi	Liberated	11
Fe	Liberated	8
pent	Liberated	5
pent	Liberated	12
Fe	Liberated	4
ру	Liberated	10
ру	Liberated	9
pent	Liberated	3
Fe	Liberated	9
nis	Rimming	2
nis	Rimming	1
FeSi	Liberated	15
ру	Liberated	8
Fe	Liberated	9
nimo	Liberated	4
nio	Liberated	8
pent	Liberated	16
Cer	Liberated	4

ру	Liberated	11
nio	Liberated	2
pent	Liberated	6
fecr	Liberated	3
nis	Liberated	3
PbMO	Liberated	4
ру	Liberated	9
ру	Liberated	7
FeSi	Liberated	9
Fe	Liberated	14
nio	Liberated	2
Phos	Liberated	4
ni	Liberated	2
nio	Liberated	6
Fe	Liberated	9
nis	Liberated	8
Fe	Liberated	23
ni	Liberated	2
fenio	Liberated	7
pent	Liberated	8
nis	Liberated	35
nis	Liberated	10
nis	Liberated	8
nio	Liberated	8
nis	Liberated	8

Detailed Speciation Results from LEGS (2007) Sample 617 (Indoor Dust)

Form Association Size

ср	Liberated	3	Form	Number	Mean	Std-Dev	Range low	Range high	
Fe	Liberated	3	total	51	8.08	6.94	2	32	
Fe	Liberated	4	Chalcopyrite	1	3	ND	3	3	
Cer	Liberated	2	FeOOH	11	7.82	6.23	3	24	
crmo	Liberated	32	Cerussite	1	2	ND	2	2	
Fe	Liberated	6	CrMO	4	11.25	14.22	2	32	
ni	Liberated	29	Ni metal	4	9.75	12.84	3	29	
Sulf	Liberated	8	FeSO4	1	8	ND	8	8	
ру	Liberated	25	FeS2	7	12.71	7.76	5	25	
Fe	Liberated	13	FeSiO2	2	10	7.07	5	15	
FeSi	Liberated	5	Pentlandite	9	6.67	3.08	3	12	
pent	Liberated	7	NiMSO4	1	5	ND	5	5	
ру	Liberated	5	NiO	5	4.4	2.79	2	9	
pent	Liberated	5	NiFeO	2	7.5	3.54	5	10	
pent	Liberated	4	NiS	1	7	ND	7	7	
nimso4	Liberated	5	Plumbobarite	1	7	ND	7	7	
ру	Liberated	9	NiMO	1	4	ND	4	4	
Fe	Liberated	4							
pent	Liberated	9	Form	(linear) freq	rm As	rm Pb	rm Ni		error-95%
pent	Liberated	6	%	%	%	%	%		
pent	Liberated	12	Chalcopyrite	0.73	0	0	0.02		2.33
nio	Liberated	5	FeOOH	20.87	91.98	17.15	0.93		11.15
crmo	Liberated	2	Cerussite	0.49	0	68.08	0		1.91
ni	Liberated	3	CrMO	10.92	0	0.63	2.06		8.56
pent	Liberated	10	Ni metal	9.47	0	0	56.11		8.03
pent	Liberated	3	FeSO4	1.94	0	0.33	0.21		3.79
ру	Liberated	14	FeS2	21.6	0	1.86	1.15		11.29
ру	Liberated	21	FeSiO2	4.85	2.38	2.23	0.37		5.9
pent	Liberated	4	Pentlandite	14.56	0	0	15		9.68
Fe	Liberated	10	NiMSO4	1.21	1.1	0.12	0.37		3.01
nio	Liberated	9	NiO	5.34	0	0	15.18		6.17
crmo	Liberated	2	NiFeO	3.64	2.05	0.14	2.91		5.14
nifeo	Liberated	5	NiS	1.7	0	0	3.98		3.55
nio	Liberated	3	Plumbobarite	1.7	0	9.42	0		3.55
nio	Liberated	3	NiMO	0.97	2.5	0.03	1.69		2.69
Fe	Liberated	8							
nifeo	Liberated	10							

Detailed Speciation Results from LEGS (2007) Sample 619 (Indoor Dust)

nifeo	Liberated	9	Form	Number	Mean	Std-Dev	Range low	Range high	
Fe	Liberated	6	total	100	8.1	6.62	2 1	45	
Fe	Liberated	2	NiFeO	5	5 7.4	4.98	3 3	15	
ср	Liberated	1	FeOOH	30	9.7	8.18	8 2	45	
FeSi	Liberated	3	Chalcopyrite	1	1	ND	1	1	
ру	Liberated	10	FeSiO2	7	' 8.14	6.91	2	21	
ру	Liberated	4	FeS2	22	9.41	7.4	3	32	
ру	Liberated	11	NiO	10	3.6	1.17	'2	5	
nio	Liberated	3	Pentlandite	8	9.5	5.5	i 3	20	
ру	Liberated	3	PbSiO4	1	5	ND	5	5	
FeSi	Liberated	2	Slag	1	2	ND	2	2	
ру	Liberated	13	ZnMO	2	. 6.5	4.95	5 3	10	
FeSi	Liberated	6	NiMO	2	2 3	0) 3	3	
Fe	Liberated	10	NiS	2	2.5	0.71	5	6	
nifeo	Liberated	3	Ni metal	1	11	ND	11	11	
ру	Liberated	5	CuMO	1	5	ND	5	5	
nifeo	Liberated	3	PbO	1	11	ND	11	11	
Fe	Liberated	3	FeSO4	6	6.83	3.66	5 4	14	
ру	Liberated	15							
Fe	Liberated	8							
pent	Liberated	8	Form	(linear) freq	rm As	rm Pb	rm Ni		error-95%
ру	Liberated	7	%	%	%	%	%		
Fe	Liberated	14	NiFeO	4.57	' 1.55	0.04	8.52		4.09
PbSiO4	Liberated	5	FeOOH	35.93	95.23	7.02	3.75		9.4
Fe	Liberated	8	Chalcopyrite	0.12	2 0	0	0.01		0.69
Slag	Liberated	2	FeSiO2	7.04	2.07	0.77	' 1.25		5.01
Fe	Liberated	5	FeS2	25.56	6 0	0.52	3.18		8.55
Fe	Liberated	7	NiO	4.44	- 0	0	29.48		4.04
FeSi	Liberated	4	Pentlandite	9.38	3 0	0	22.55		5.72
znmo	Liberated	10	PbSiO4	0.62	2 0	12.06	6 O		1.54
znmo	Liberated	3	Slag	0.25	5 0	0	0.03		0.97
nifeo	Liberated	7	ZnMO	1.6	6 0	1.21	0.01		2.46
nimo	Liberated	3	NiMO	0.74	1.15	0.01	3		1.68
Fe	Liberated	26	NiS	1.36	6 0	0	7.42		2.27
nio	Liberated	4	Ni metal	1.36	6 0	0	18.78		2.27
ру	Liberated	3	CuMO	0.62	2 0	0	0.71		1.54
nis	Liberated	5	PbO	1.36	6 0	78.15	5 O		2.27
Fe	Liberated	4	FeSO4	5.06	6 O	0.21	1.29		4.3

ру	Liberated	10
Fe	Liberated	13
ру	Liberated	4
Fe	Liberated	6
Sulf	Liberated	7
Fe	Liberated	5
nio	Liberated	5
Fe	Liberated	4
Sulf	Liberated	6
Sulf	Liberated	5
Sulf	Liberated	14
Sulf	Liberated	5
pent	Liberated	9
nio	Liberated	2
Sulf	Liberated	4
pent	Liberated	7
ру	Liberated	7
nis	Liberated	6